
Dear Professor MacCallum,

I am new to theoretical physics. I have taken up the subject in my middle-
aged spare time. Consequently, I approach the arguments for and against the
conventional interpretation of the Hilbert solution without any academic bias,
in terms of the analytical skills I have acquired in my other academic work and
from my long experience as an erstwhile private detective. My motivation has
been to find out for myself whether or not Einstein’s theory is as esoteric and
incomprehensible as so often claimed. I feel that I have verified my initial sus-
picions that the theory is not beyond the cognitive powers of anyone interested
in the subject, willing to think hard about it.

I am certainly not as well-read on the subject as the experts so I am not sure
if what I have to say will simply be a repeat of the arguments you have warned
me about, and therefore I suppose I run the risk of trying your patience.

In my study I have been surprised to find so many inaccuracies and contrary
claims that my experience as a private detective leads me to believe that all is
not as it should be. Perhaps my former professional requirements for accuracy
in argument and evidence influence me unduly in matters of science, but science
and detective work have the common requirement of logic and substantiation;
and in mathematical sciences mathematical rigour is paramount.

The first thing that struck me when I encountered the Hilbert solution and
the subsequent conventional interpretation thereof, aside of the inaccuracies in
the claims attributed to Schwarzschild, and the fact that the solution is not due
to Schwarzschild at all, is that two assumptions are made which I do not feel
are mathematically justified, viz.,

a) The regions 0 < r < 2m and 2m < r < ∞ are valid regions.
b) The parameter r is a radius in the gravitational field - that r is a
measurable quantity.

As I see it, one cannot talk about extensions into the region 0 < r < 2m or
division into R and T regions until it has been rigorously established that the
said regions are valid to begin with. Mere assumption is not, in my view, per-
missible. Similarly, one cannot treat the r-parameter as a radius and measurable
quantity in the gravitational field without first demonstrating that it is such.
My perception is that none of this has been done in the conventional analysis.
Therefore, my investigations first considered the answers to these issues.

I note that it is required that the metric of Special Relativity is to be recov-
ered in the absence of matter, and in the far-field. The said metric is

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
. (1)

Obviously, the spatial component of this metric describes a sphere, centred at
the point rc = 0. Consider two concentric spherical surfaces at ro and r, ro < r
(owing to the isotrophy of space there is no loss of generality in the restriction
r ≥ ro). The distance between these surfaces is an interval along a radial line
through rc, ro and r. Consequently, one can consider ro and r as points, just any
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points, that are on the radial line cutting the surfaces at ro and r. These points
lie at the ends of that interval, which is orthogonal to the spherical surfaces.

The geometry of (1) is such that that the distance between ro and r is given
by,

d =
∫ r

ro

dr = r − ro. (2)

d is a Euclidean distance. If ro = 0 then d ≡ r.
According to (1) the circumference χ of a great circle is given by,

χ = 2πr. (3)

χ is Euclidean; the usual equation for the circumference of a circle. Furthermore,
the circumference of a great circle centred at ro and reaching to r is,

χ = 2πd, (4)

where d is given by (2). Indeed, d may be considered the radius of a sphere
centred on ro.

Now introduce a test particle at each of ro and r. Let the particle located at
ro acquire mass. As I see it, the coordinates ro and r do not change, however the
distance between ro and r will no longer be given by (2) and the circumference
of a great circle centred at ro and reaching to r will no longer be given by (4).
The static generalisation of (1) can be written as,

ds2 = A(r)dt2 −B(r)dr2 − C(r)
(
dθ2 + sin2 θdϕ2

)
, (5)

A,B,C > 0.

The solution of (5) for the gravitational field will yield a mapping of the
Euclidean distance d = r−ro into a non-Euclidean distance RP (r) in the pseudo-
Riemannian manifold locally generated by the presence of matter at ro. I seek
this mapping.

Transform (5) by setting,

r∗ =
√

C(r). (6)

Then (5) becomes,

ds2 = A∗(r∗)dt2 −B∗(r∗)dr∗2 − r∗2
(
dθ2 + sin2 θdϕ2

)
. (7)

In the usual way one obtains the solution to (7) as,

ds2 =
(

r∗ − α

r∗

)
dt2 −

(
r∗

r∗ − α

)
dr∗2 − r∗2(dθ2 + sin2 θdϕ2), (8)

α = 2m,

which by using (6) becomes,

ds2 =

(√
C − α√

C

)
dt2 −

( √
C√

C − α

)
C ′2

4C
dr2 − C(dθ2 + sin2 θdϕ2). (9)
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Alternatively one could drop the * in (8) to obtain the familiar Droste/Weyl/(Hilbert)
line-element,

ds2 =
(

r − α

r

)
dt2 −

(
r

r − α

)
dr2 − r2(dθ2 + sin2 θdϕ2), (10)

and then noting, as did J. Droste and A. Eddington, that r2 can be replaced by
a general function of r without destroying the spherical symmetry of (10). Let
that function be C(r), and so equation (9) is again obtained. Equation (10) is
a particular solution, but equation (9) provides a means by which the form of
C(r) might be determined to obtain a means by which all particular solutions,
in terms of an infinite sequence, may be constructed, according to the general
prescription of Eddington. Clearly, the correct form of C(r) must naturally
yield the Droste/Weyl/(Hilbert) solution, as well as the Schwarzschild solution,
and the Brillouin solution, amongst the infinitude of particular solutions that
the field equations admit.

I have made no assumptions as to the range on the parameter r. The only
assumption about r that I make is that the point-mass is to be located some-
where, and that somewhere is ro, the value of which must be obtained rigorously
from the geometry of equation (9).

The geometrical relationships between the components of the metric tensor
of (1) must be precisely the same in (9), and in (10). Therefore, the circumfer-
ence χ of a great circle on (9) is given by,

χ = 2π
√

C(r), (11)

and the proper distance (proper radius) Rp(r) is,

Rp(r) =
∫ √

B(r)dr. (12)

I call
√

C(r) the curvature radius.
Taking B(r) from (9) gives,

Rp(r) =
∫ √ √

C√
C − α

C ′

2
√

C
dr, (13)

=
√√

C(r)
(√

C(r)− α
)

+ α ln

∣∣∣∣∣∣
√√

C(r) +
√√

C(r)− α

K

∣∣∣∣∣∣ ,
K = const.

The relationship between r and Rp is,

as r → ro, Rp(r) → 0
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where ro is the location of the point-mass. Clearly 0 ≤ Rp < ∞.
From (13),

Rp(ro) = 0 =
√√

C(ro)
(√

C(ro)− α
)
+ (14)

+α ln

∣∣∣∣∣∣
√√

C(ro) +
√√

C(ro)− α

K

∣∣∣∣∣∣ ,
and so, from (14), √

C(ro) = α, K =
√

α. (15)

Therefore (14) becomes

Rp(r) =
√√

C(r)
(√

C(r)− α
)

+ α ln

∣∣∣∣∣∣
√√

C(r) +
√√

C(r)− α
√

α

∣∣∣∣∣∣ , (16)

ro < r < ∞.

Equation (16) is the required mapping. One can see that ro cannot be de-
termined: in other words, ro is entirely arbitrary. One also notes that (9) is
singular only when r = ro in which case goo = 0. There is no value of r that
makes g11 = 0.

Clearly, r does not determine the geometry of the gravitational field directly.
It is not a radial coordinate in the gravitational field. Rp(r) is the non-Euclidean
radial coordinate in the pseudo-Riemannian manifold of the gravitational field
around the point ro.

Now in addition to the established fact that
√

C(ro) = α, C(r) must also
satisfy the no matter condition,

C(r) ≡ r2 when α = 0,

and the far-field condition,

lim
r→∞

C(r)
r2

→ 1. (17)

Furthermore, C(r) is a strictly monotonically increasing function of r, i.e. C ′(r) >
0 ∀ r > ro. The only general form for C(r), from which an infinite sequence of
particular solutions satisfying all the required conditions, is,

Cn(r) = [(r − ro)
n + αn]

2
n ,

n ∈ <+, ro = bα, b ∈ <,

where n and b are arbitrary. Owing to the isotrophy of space there is no loss
of generality in setting the restriction b ≥ 0, so that the admissible Cn(r) are
given by,

Cn(r) = [(r − ro)
n + αn]

2
n , (18)

n ∈ <+, ro = bα, b ∈
(
<− <−

)
.
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According to (18), when b = 0 and n is taken in integers, the following infinite
sequence of particular solutions obtains,

C1(r) = (r + α)2 (Brillouin’s solution)
C2(r) = r2 + α2

C3(r) = (r3 + α3)
2
3 (Schwarzschild’s original solution)

C4(r) = (r4 + α4)
1
2 , etc.

When b = 1 and n is taken in integers, the following infinite sequence of
particular solutions obtains,

C1(r) = r2 [Droste/Weyl/(Hilbert) solution]
C2(r) = (r − α)2 + α2

C3(r) = [(r − α)3 + α3]
2
3

C4(r) = [(r − α)4 + α4]
1
2 , etc.

The form (18) satisfies Eddington’s prescription for a general solution.
By (9) and (18) the circumference χ of a great circle in the gravitational

field is,
χ = 2π

√
Cn(r) = 2π[(r − ro)n + αn]

1
n , (19)

and the proper radius Rp(r) is,

Rp(r) =
√

[(r − ro)n + αn]
1
n

(
[(r − ro)n + αn]

1
n − α

)
+ (20)

+α ln

∣∣∣∣∣∣ [(r − ro)n + αn]
1
2n +

√
[(r − ro)n + αn]

1
n − α

√
α

∣∣∣∣∣∣ ,
ro < r < ∞.

According to (19), χ = 2πα is a scalar invariant. By (19) and (20),

lim
r→ro

χ(r)
Rp(r)

→∞,

irrespective of the values of n and b, so that when Rp = 0, at r = ro, there is a
quasiregular singularity, and therefore inextendible.

The Kretschmann scalar f = RijkmRijkm for (5) with (18) is,

f =
12α2

[Cn(r)]3
=

12α2

[(r − ro)n + αn]
6
n

. (21)

Then f(ro) = 12
α4 is a scalar invariant, irrespective of the values of n and b.

The Kruskal-Szekeres form has no meaning since the r-parameter is not the
radial coordinate in the gravitational field at all. Furthermore, the value of ro

is entirely arbitrary.
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If α = 0, then (9) with (18) reduces to the metric of Special Relativity.
The value of the r-parameter of a spacetime event depends upon the coor-

dinate system chosen. However, the proper radius Rp and the curvature radius√
Cn(r) of that event are independent of the coordinate system. This is easily

seen as follows. Consider a great circle centred at the point-mass and passing
through a spacetime event. Its circumference is measured at χ. Divide χ by 2π,

χ

2π
=
√

Cn(r).

Thus, the coordinate system is determined by χ. Putting χ
2π =

√
Cn(r) into

(14) gives the proper radius of the spacetime event,

Rp(r) =
√

χ

2π

( χ

2π
− α

)
+ α ln

∣∣∣∣∣
√

χ
2π +

√
χ
2π − α

√
α

∣∣∣∣∣ ,
which is independent of the coordinate system chosen. To find the r-parameter
in terms of a particular coordinate system set,

χ

2π
=
√

Cn(r) = [(r − ro)
n + αn]

1
n ,

so

r = ro +
[( χ

2π

)n

− αn
] 1

n

= bα +
[( χ

2π

)n

− αn
] 1

n

.

Thus r depends upon the arbitrary values n and b, which establish a coordinate
system. Then when Rp = 0, χ = 2πα, and so r = ro irrespective of the values of
n and b. Indeed, χ

2π is independent of the coordinate system. A truly coordinate
independent description of spacetime events has been attained.

The foregoing analysis can be easily generalised to treat of the point-charge,
the rotating point-mass, and the rotating point-charge. The overall solution I
obtain (when Λ = 0) is,

ds2 =
∆
ρ2

(
dt− a sin2 θdϕ

)2− sin2 θ

ρ2

[(
Cn + a2

)
dϕ− adt

]2− ρ2

∆
C ′n

2

4Cn
dr2−ρ2dθ2,

Cn(r) = [(r − ro)
n + βn]

2
n , ro = bβ, b ∈

(
<− <−

)
, n ∈ <+, (22)

a = L
m , ρ2 = Cn + a2 cos2 θ, ∆ = Cn − α

√
Cn + q2 + a2.

rb(θ) =
[(

m +
√

m2 − q2 − a2 cos2 θ
)n

− βn
] 1

n

+ ro,

β = m +
√

m2 − (q2 + a2), a2 + q2 < m2,

ro < r < ∞,

where L is the angular momentum, q the charge. It is easily seen that (22)
reduces to (1) for appropriate choice of parameters. The solutions for the point-
charge and the rotating point-mass are similarly extracted. In no case is there
a black hole. In (22) rh ≡ ro.
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From (22) the general solution for the point-charge in relativistic units is,

ds2 =
(

1− α√
Cn

+
q2

Cn

)
dt2−

(
1− α√

Cn

+
q2

Cn

)−1
C ′n

2

4Cn
dr2−Cn(dθ2+sin2 θdϕ2),

(23)
Cn(r) = [(r − ro)

n + βn]
2
n ,

n ∈ <+, ro = bβ, b ∈
(
<− <−

)
, β = m +

√
m2 − q2, q2 < m2,

ro < r < ∞.

It can be shown that the angular velocity ω of a test particle is,

ω2 =

(
α

2C
3
2
n

− q2

C2
n

)
=

[
α

2 [(r − ro)
n + βn]

3
n

− q2

[(r − ro)
n + βn]

4
n

]
. (24)

Then,

lim
r→ro

ω =

√
α

2β3
− q2

β4
. (25)

Equation (24) is Kepler’s 3rd Law for the point-charge. It obtains the finite
limit given in (25), which is a scalar invariant for the point-charge. When
q = 0, equations (24) and (25) reduce to those for the simple point-mass. In
the case of the simple point-mass, Kepler’s 3rd law is,

ω2 =
α

2C
3
2
n

=
α

2 [(r − ro)
n + αn]

3
n

, (26)

Then,

lim
r→ro

ω =
√

α

2α3
=

1
α
√

2
. (27)

(27) is a scalar invariant for the simple point-mass, and is precisely that obtained
by Schwarzschild in his 1916 paper, and consistent with the form for Kepler
derived by Droste, in 1916.

How is rc = 0 to be interpreted? I regard it as simply the arbitrary location
of an external observer. However, such an observer can be located anywhere, so
that rc = ro = 0 can always be defined as the arbitrary location of the point-
mass and r = rob > 0 the arbitrary location of an external observer. In this
case Cn(r) takes the more restricted form,

Cn(r) = (rn + αn)
2
n ,

and so the Droste/Weyl/(Hilbert) solution and its associated infinite sequence
of particular solutions would actually be excluded, but Schwarzschild’s original
solution and the solution due to Brillouin are not - because Schwarzschild defined
rc = ro = 0 as the location of the point-mass at the outset of his analysis and
constructed his solution to it. However, owing to the limitations set upon him
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by the penultimate version of Einstein’s theory, which he was working with, he
could only obtain a particular solution, not a general solution. Also, this result
is unaffected if the observer and the point-mass are one and the same at ro = 0.

The local acceleration of a test particle approaching the point-mass along a
radial path has been determined by N. Doughty (Am. J. Phys. 49, 720, 1981)
at,

a =
√
−grr (−grr) |gtt,r|

2gtt
.

By (9), using (18), the acceleration is,

a =
α

2C
3
4
n

(
C

1
2
n − α

) 1
2
.

Then,
lim

r→ro

a = ∞,

since Cn(ro) = α2.
Y. Hagihara (Jpn. J. Astron. Geophys. 8, 67, 1931) has shown that all those

geodesics which do not run into the Hilbert boundary at r = 2m are complete.
According to my arguments r = 2m is a point at which the point-mass is located
(and an arbitrary one at that). However, as I have also argued, the curvature
invariant is finite there. I conclude that no curvature singularity can arise in
the vacuum field.

I would now like to make some comment on specific remarks you made in
your email.

I agree that the modern relativists do not interpret the Hilbert solution over
0 < r < ∞ as Hilbert did, instead making a distinction between 0 < r <
2m and 2m < r < ∞. I have been previously told by a modern relativist
that one is then entitled to ’choose’ a region. However, I do not see that this
is admissible because, as I have argued, the validity of the regions must be
rigorously determined before such claims can be made. One cannot just look
at the Hilbert metric and assume, tacitly or otherwise, that these regions are
valid ranges on the r-parameter. Furthermore, it is also tacitly assumed by the
mainstream analysis that the r-parameter is a radius in the gravitational field.
Again, I view this as inadmissible, and that the r-parameter must be rigorously
established as a radius in the gravitational field before one can use it as such. J.
L. Synge makes the same mathematically unjustified assumptions on the Hilbert
line-element. He remarks, (Proc. Roy. Irish Acd. 53, 6, 1950, pp. 83),

’This line-element is usually regarded as having a singularity at r =
α, and appears to be valid only for r > α. This limitation is not
commonly regarded as serious, and certainly is not so if the general
theory of relativity is thought of solely as a macroscopic theory to be
applied to astronomical problems, for then the singularity r = α is
buried inside the body, i.e. outside the domain of the field equations
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Rmn = 0. But if we accord to these equations an importance com-
parable to that which we attach to Laplace’s equation, we can hardly
remain satisfied by an appeal to the known sizes of astronomical bod-
ies. We have a right to ask whether the general theory of relativity
actually denies the existence of a gravitating particle, or whether the
form (1.1) may not in fact lead to the field of a particle in spite of
the apparent singularity at r = α.’

M. Kruskal (Phys. Rev. 116, 1743, 1960) remarks of his proposed extension,

’That this extension is possible was already indicated by the fact that
the curvature invariants of the Schwarzschild metric are perfectly
finite and well behaved at r = 2m∗.’

which betrays the very same unproven assumptions. Moreover, his claim
about the finitude of the curvature invariant implies incorrectly that the singu-
larity cannot occur where the curvature is finite.

Szekeres (Math. Debreca, 7, 285, 1960) says of the Hilbert line-element,

’... it consists of two disjoint regions, 0 < r < 2m, and r > 2m,
separated by the singular hypercylinder r = 2m.’

which again betrays the same unproven assumptions.
I draw your attention to the following additional problems with the K-S

form.

a). Applying Doughty’s acceleration formula to the K-S form, it is
easily found that,

lim
r→2m

a = ∞.

But according to K-S there is no singularity at r = 2m, i.e. no
matter there - contra-hype. This is a direct result of the conventional
incorrect assumptions about the r-parameter.
b). As r → 0, u2 − v2 → −1. These loci are spacelike, and therefore
cannot describe any configuration of matter or energy.

Either of these features alone proves the K-S form inadmissible, in my opinion.
I am of the view that correct geometrical analysis excludes the interior

Hilbert region on the grounds that it is not a region at all, and invalidates the
assumption that the r-parameter is a radius in the gravitational field. Conse-
quently, the Kruskal-Szekeres formulation is meaningless, since it does not even
deal with the correct radial parameter associated directly with the gravitational
field. In addition, the so-called ’Schwarzschild radius’ is also meaningless - it
is not a radius in the gravitational field, as far as I can see. Furthermore, I
maintain that Hilbert’s r = 2m is indeed a point.

I agree with you that the form of the Hilbert line-element is given by
Schwarzschild in his equation (14), where it occurs in terms of the parame-

ter R, however Schwarzschild also includes there R =
(
r3 + α3

) 1
3 , having pre-

viously established that 0 < r < ∞. Consequently, Schwarzschild’s R has
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the lower bound α = 2m. Since Schwarzschild’s R and Hilbert’s r can be
replaced with any appropriate analytic function C(r), the range on r will de-
pend upon the function chosen. In Schwarzschild’s case that is 0 < r < ∞
(since ro = 0, C3(r) =

(
r3 + α3

) 2
3 ) and in Hilbert’s case 2m < r < ∞ (since

ro = 2m,C1(r) = r2), according to the geometrical relationships between the
components of the metric tensor, as far as I can see. Therefore, I agree with you
that the geometry and the invariants are the important properties, but it seems
to me that the conventional analysis has erred in its geometrical analysis and
identification of the invariants, as a direct consequence of its initial unvalidated
assumptions about the r-parameter.

I my opinion, the only reason that the Hilbert r-parameter conventionally
breaks down at r = 2m is because of the initial arbitrary and incorrect assump-
tions that the inner region is also valid and that r is a radius in the gravitational
field. I do not see how these assumptions can possibly be admitted.

There is indeed no doubt that the Kruskal-Szekeres form is a solution, as you
say, of the Einstein vacuum field equations, however that does not guarantee
that it is a solution to the problem. There exists an infinite number of solutions
to the vacuum field equations which do not yield a solution for the gravitational
field of the point-mass. Satisfaction of the field equations is a necessary but
insufficient condition for a potential solution to the problem. It is evident to
me that the conventional conditions that must be met are inadequate, viz.,

1. be analytic;

2. be Lorentz signature;

3. be a solution to Einstein’s free-space field equations;

4. be invariant under time translations;

5. be invariant under spatial rotations;

6. be (spatially) asymptotically flat;

7. be inextendible to a wordline L;

8. be invariant under spatial reflections;

9. be invariant under time reflection;

10. have a global time coordinate.

I am of the view that this list must be augmented by a boundary condition
at the location of the point-mass, which is, in my formulation of the solution,
r → ro ⇒ Rp(r) → 0. Schwarzschild actually applied a form of this boundary
condition in his analysis. Marcel Brillouin also pointed out the necessity of
such a boundary condition in 1923. The condition has been disregarded or gone
unrecognised by the mainstream authorities.

I agree with you that any constants appearing in a valid solution must ap-
pear in an invariant derived from the solution. The solution I obtain meets this
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condition in the invariance, at r = ro, of the scalar curvature, of the circumfer-
ence of a great circle, of Kepler’s 3rd law, of C(ro) = α2, of Rp(ro) = 0, and not
only in the case of the point-mass, but also in all the relevant configurations,
with or without charge.

The fact that the circumference of a great circle approaches the finite value
2πα does not seem to me more odd than the conventional oddity of the change
in the arrow of time in the interior Hilbert region. Indeed, I regard the latter
as an even more violent oddity. The finite limit of the said circumference does
however, according to my analysis, appear to be consistent with the geometry
resulting from Einstein’s gravitational tensor. The variations of θ and ϕ displace
the proper radius vector, which has zero length at r = ro, over the spherical
surface of finite area 4πα2. Einstein’s theory admits nothing more pointlike,
so perhaps the point-mass is a misnomer. Whether or not such an oddity is
permissible is another question entirely, one bound up, I suspect, with the for-
mulation of the gravitational tensor itself. Objections to Einstein’s formulation
of the gravitational tensor were raised as long ago as 1917, by T. Levi-Civita,
on the grounds that, from the mathematical standpoint, it lacks the invariant
character actually required of General Relativity, and further, produces an un-
acceptable consequence concerning gravitational waves. At this time, I have no
definite opinion on this matter, but it is not pertinent to the issue of whether
or not the black hole is consistent with the theory as it currently stands on
Einstein’s gravitational tensor.

Your arguments about cutting a sphere out of flat space are based, I believe,
upon the unjustified assumption that the r-coordinate is a radial coordinate in
the gravitational field. I do not see how this assumption can be maintained.
I regard r = 2m as a point. I do not agree therefore, with your view that
Schwarzschild’s original coordinates implicitly identify a sphere topologically
with a point. I have argued that r is not the radial coordinate of a test particle in
the gravitational field. Only Rp(r) can claim that character in the gravitational
field.

I would now like to make a few general remarks.
It is not uncommon for experts (e.g. C. Misner, K. Thorne and J. Wheeler,

S. Hawking and G. Ellis, S. Chandrasekhar, amongst others) to proclaim that
the Michell-Laplace dark body is a primitive black hole. This claim is utterly
false since it can easily be shown that there is always a class of observers which
can see the Michell-Laplace dark body. This claim is of course based upon a
confusion about the meaning of an escape velocity. It is astonishing that any
experts at all make this claim.

It is also frequently claimed by many experts (e.g. Misner, Thorne and
Wheeler, Hawking and Ellis, I. Novikov, amongst others) that black holes can
be members of binary systems and that black holes can collide. Even if it
is assumed that black holes exist, for the sake of the argument, it makes no
sense to talk about such situations since all the known solutions to the field
equations involve a lone gravitating body and a single test particle. There are
no known solutions involving two or more comparable masses. It is not even
known if Einstein’s field equations admit of such configurations. Therefore,
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without at least an existence theorem rigorously establishing the possibility of
these configurations it is not possible to justify them theoretically.

I attempted to obtain the paper by I. Novikov that you referred to, but it
cannot be read or downloaded from the GRG website - the links are inactive.
I have not read this paper previously. Nonetheless I suspect that Novikov will
have made the same unjustified assumptions about the r-coordinate.

There seems to me to be a very disturbing situation in modern physics in that
free and open discussion is not encouraged, and further, that the questioning of
established authority is deliberately gagged.

There appears to be a cult-like following of Einstein that does not permit
his theory to be seriously questioned. This is very bad. Physics is a science and
so no theory is absolute. Perhaps only in pure mathematics can we achieve the
’absolute’. Although I have not questioned the foundations of Einstein’s theory
in my analysis of the problem of the point-mass, I do not object to others doing
so. Furthermore, I am open to alternative theories of gravitation, and any
other physical phenomena, provided they are based upon sound interpretation
of valid physical data and consistent theoretical considerations. Free and open
discussion alone can lead to progress, but this is, sadly, apparently no longer
the case in physics.

I would welcome your comments, especially if you can demonstrate to me
that my thinking is awry. However, if you maintain that assumption about the
r-coordinate is legitimate I fear that we will be unlikely to come to an agreement.

If you feel disinclined to correspond further then please let me know. I would
prefer to hear from you to that effect rather than be left to figure it out for my-
self. In any event I would like to thank you once again for bothering to write in
the first place.

I am,
Yours faithfully,
Stephen J. Crothers.
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