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On the Theory of Gravitation

By Hermann Weyl.

(Translation by Christian Nutto1 and Stephen J. Crothers2.)
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Abstract.

A. Appendix to General Relativity.

1. The derivation of a Hamiltonian Principle for sovling problems of the
mass-point given the current state of our knowledge.

2. The determination of the energy-momentum tensor from a Hamiltonian
Principle for the variations of the parameters, which are due to the infinitesimal
deformation of the four-dimensional spacetime continuum, if the parameters are
dragged along the deformation.

3. Principles of experiment and theory. The derivation of Fermat’s Principle
of least time for light rays in a static gravitational field, and of an analogous
principle for the path of a charged mass-point under the influence of gravitation
and electricity.

B. Theory of the static, axial symmetric field.

4. Easy derivation of the Schwarzschild solution for a mass-point and trans-
formation to another set of coordinates for the following important coordinate
system: for the electrostatic and gravitational field of a charged mass-point.

5. With the construction of a particular coordinate system of the uniquely
derived canonical cylindrical coordinates it is possible to calculate the fields of
resting masses which have rotational symmetry, as easily by this method as
with Newton’s theory; between the solutions of Newton and Einstein there is a
relation described by elementary functions.

6. The same is true for the electrostatic and gravitational field of charged
mass-points with rotational symmetry.

———–

A. Appendix to the Theory of Gravitation.

1. Hamiltonian Principle.
1c.nutto@t-online.de
2Australian Pacific College; thenarmis@yahoo.com
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Hilbert3, following Mie’s theory4, in a more general way then Lorentz5 and the
creator of the theory of gravitation himself6, showed that gravitation equations
can actually be derived by a Hamiltonian principle. His first formulation was
not successful because we don’t know the Hamiltonain function for the matter (
? ) since we don’t even know how to describe it with independent parameters.

Under these circumstances it seems to me to be important to derive a Hamil-
tonian principle which includes our current knowledge of matter, in the sense of
Einstein, i.e. the energy-momentum. From this principle, which looks different
to all formulations so far, the following laws should come from the same source.

1. The inhomogeneous gravitational equation which says that the
energy-momentum tensor causes the curvature of spacetime. The
energy-momentum tensor will only be construicted from the energy-
momentum tensor of the other, and from the kinetic energy-momentum
tensor of the matter in the sense of ρuiuk, in which the invariant
matter density appears in the components ui (i = 1, 2, 3, 4) of the
four-velocity. I do not take into account the constitution of matter
or its cohesive forces.
2. The Maxwell-Lorentz equations, which have the same meaning
in the electron theory, the only electric current is the displacement
current.
3. The law for the ponderomotive forces in the electromagnetic field
and the mechanical equations which describe the movement of those
masses in the influence of those forces and the gravitational field.

If the xi are the four coordinates of spacetime7

gikdxidxk (1)

is the invariant quadratic differential form ( ??? index 3)8 whose coefficients
are the gravitational potentials, and φidxi the invariant linear differential form
whose coefficients φi are the components of the electromagnetic four-potential.
The indefinite integral

−1
2

∫
Hdω where H = gik

({
ik
r

}
{rs

s } −
{

ir
s

}{
ks
r

})
I call, in this part of spacetime, the influence of the gravitational field, and the
integral

−1
2

∫
Ldω where L =

1
2
FikF ik =

1
2
gijgkhFikFjh

3Gott. Nachr. 1915, Sitzung vol. 20, November
4Ann. d. Phys. 37, p. 511, 39, p.1, 1912; 40, p. 1, 1913.
53st ref
6A. Einstein, sitzungsber. d. Preuss. Akad. d. Wiss., 42, p. 1111, 1916.
7ref 2
8Each quadratic form can be transformed linearly to sums and differences of squares; the

number of the negative elements is called ????. That this index is unique is part of the law of
the quadratic forms.
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is the influence of the electromagnetic field. Here

Fik =
∂φk

∂xi
− ∂φi

∂xk

are the components of the electromagnetic field, and dw is the four-dimensional
elemental volume

√
gdx1dx2dx3dx4, −g = det |gik|.

In this phenomenological theory the field is opposed by the ”substance”
consisting of a three-dimensional moving continuum which one can think of
in a (mathematical) way in infinitesimal elements. For each element there is a
certain unvarying mass dm and an unvarying electrical charge de; it corresponds
to the worldline whose direction is given by the proportion of the differentials
dx1 : dx2 : dx3 : dx4. The value of∫ {

dm

∫ √
gikdxidxk

}
, (2)

in which the outer integral is over the whole substance, but the inner integral is
over the part of the worldline of the substance element dm which is inside the
world region ℘, and I call this the gravitational field due to the substance. We
assume that the movement of the substance is related to the gravitational field
in such a way that the square root which appears in the inner integral, which
is the proper time, is always positive. We transform (2) into an integral

∫
ρdω

over the world region ℘, in which r is the invariant spacetime function which is
the absolute mass density. Analogously to (2) the integral for the influence on
the substance due to the electric field is∫ {

de

∫
φidxi

}
;

and the absolute electric charge density ε is defined by∫
℘

εdω =
∫ {

de

∫
ds

}
.

The Hamiltonian principle is:
The sum of the field and the influence of the gravitation and the electricity is

in each world region an extremum opposed to any variation on the border of the
electromagnetic and gravitational fields and of the time and space displacements
of the moving substance9.

The variation of the gik (the electromagnetic field has no variation and the
substance has the same worldline) derives the Einstein gravitational equations
(1). Variation of the electromagnetic potential φi gives the Maxwell-Lorentz
equations

9footnote
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(II) 1√
g

∂(√gF ik)
∂xk

= J i = εdxi

ds ,

and the variation of the worldlines of the substance element firstly gives the ???
equations

(III) ρ
(

d2xi

ds2 +
{

hk
i

}
dxh

ds
dxi

ds

)
= pi,

where pi is the contravariant component of the force; its covariant is given by

pi = FikJk.

Of course, these laws are not independent of each other. The mechanical equa-
tion (III), together with the conservation of matter, is a mathematical result of
the laws (I) and (II).

2. The Energy-Momentum Tensor

From the phenomenological theory I go to a theory that can be formulated.
With the authors quoted above the world is dominated by a principle of the
following form ∫

℘

(H −M) dω = Extremum.

The world density M of the cause of the material action is a universal function
of the independent parameters which characterise the action. It’s derivative,
the first or even of higher order, ofter the coordinates xi and the gij . To give
an example, M in Mie’s theory depends not only on gik but also on the four
components φi of the electromagnetic potential and the field components Fik

which are derived from the φi by differentiation. The derivation of the me-
chanical equations in the phenomenological theory gives me the idea that in
general the principle of conservation of energy and momentum is the expression
that the Hamiltonian Principle is true, especially for those infinitesimally small
variations which are caused by the infinitesimal deformation in a such a way
that the parameters are dragged along with this deformation. Indeed, this is
the case and it looks like this is going to be the easiest and natural derivation
of the energy principle.

If we put M
√

g = ℵ, so that the energy-momentum tensor Tik is defined
with the equation for the total differential for ℵ:

1
√

g
δℵ = −Tikδgik +

1
√

g
(δℵ)0 ,

where (δℵ)0 , stands for those terms which have the differentials of the material
parameters, (for example the φi and Fik) in linear form. With a coordinate
transformation of the form

xi = xi(x1, x2, x3.x4)
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the transformation of the contravariant tensor gik is given by

gik = gαβ ∂xi

∂xα

∂xk

∂xβ
.

If the transformation is infinitesimal:

xi = xi + ε · ξi (x1, x2, x3, x4)

(ε describes the infinitesimal, this means ε converges to zero), as a result we get
for the difference

gik(x)− gik(x) = δgik

the value for gik and gik for two systems (x) and (x), which describe in the old
and the new coordinate systems the same world point

δgik = ε

(
gαk ∂ξi

∂xα
+ giβ ∂ξk

∂xβ

)
.

If we do the same for the parameters of the material action, so we get, if we
state that with such an infinitesimally small transformation of the invariant M
stays the same, the law that we get shows that the energy-momentum tensor is
dependent on gik and the material parameters.

We look at a world region ℘, which is described by the coordinates xi,
a certain mathematical area = which is in the area of the variables xi. If
the infinitesimal transformation has the property that the variation ξi on the
boundary of the region ℘ disappears with its derivatives, so that the world
region = in the new coordinates xi is the same mathematical region =. I put

∆gik = gik(x)− gik(x) = δgik +
{
gik(x)− gik(x)

}
= δgik − ε · ∂gik

∂xα
ξα,

so I make the difference from gik and gik on two spacetime points, in which
the second in the new coordinate system, the same coordinate values has as the
first are in the old system. In other words, I make a virtual displacement. The
same meaning of ∆ is the same for all other values. If I write in short dx for
the integration element dx1dx2dx3dx4 so

∫
ℵdx is an invariant, then∫

=
ℵdx =

∫
=
ℵ(x)dx =

∫
=
ℵ(x)dx; furthermore

∫
=

∆ℵ · dx = 0.

But it is
∆ℵ = −Lik∆gik + (∆ℵ)0 (Lik =

√
g · Tik) .

For the following you must be aware that: in the transformed coordinate system
- for example, I take Mie’s theory - there are the same form of the equations,

∂φk(x)
∂xi

− ∂φi(x)
∂xk

= F ik(x),
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and since it doesn’t matter what we call the coordinates, we can write

∂φk(x)
∂xi

− ∂φi(x)
∂xk

= F ik(x).

So the relations
∂φk

∂xi
− ∂φi

∂xk
= Fik

stay the same. If we go from the functions φi, Fik to the functions φi, F ik of the
same coordinate xi, this means they stay the same under the variation ∆ (but
not under the variation δ). Therefore, with the general principle of (cause ??),
in which we leave the gik unmodified, this means, with the laws of the material
action it is therefore∫

=
(∆ℵ)0 dx = 0, and so

∫
Lik∆gik · dx = 0.

If we use the expression for ∆gik and eliminate the derivative of the displacement
component with the help of partial integration, we get∫ {

∂Lk
i

∂xk
+

1
2

∂grs

∂xi
Lrs

}
ξidx = 0,

and with that it is proved for the energy-momentum equations,

∂Lk
i

∂xk
+

1
2

∂grs

∂xi
Lrs = 0, (3)

For the variation of the gravitational field which disappears on the boundary
of the world region ℘, it is

δ

∫
Hdω =

∫ (
Rik −

1
2
gikR

)
δgik · dω;

whereas Rik, which is the Riemann curvature tensor, and the invariant

R = gikRik.

If we use the same ideas on H instead of on M (that is H is also a differen-
tial quotient which consists of the gik, it doesn’t matter) we find without any
calculations that the tensor

Rik −
1
2
gikR,

Put in place of Tik solves the same equation (3) identically. The energy-
momentum tensor is therefore not only a mathematical result of the laws of
the material action but also of the gravitational equations

Rik −
1
2
gikR = −Tik.
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Instead of the old separation of geometry, mechanics and physics in the Einstein
theory there is the opposing of the material action and the gravitation. Because
of the presence of the energy-momentum tensor, on one hand is a result of the
laws of the material action, on the other hand the necessary consequence that
the matter describes how matter is part of the gravitation equation. In the
system of the material and the gravitational laws there are four unnecessary
equations. In the general solution there must be four arbitrary functions since
the equations, because of their invariant nature, the coordinate system of the
xi is undetermined.10

3. Connexion with observations. Light rays and path of a particle in
the static gravitational field.

We can only capture the ”objective” world, which physics is striving to peel out
of the lived reality, after its designated content with mathematical concepts.
But in order to signify the meaning, which this mathematical concept possess
for reality, a task for the ”Perception” -theory, which is naturally not only
given by the physical concepts alone, but also has to be afforded to the steady
vocation of the visual experiences in the consciousness. Of this kind is the
connexion between the vibrations frequency and the quality of the sense for
colour. In general it seems that the impinging upon the ”receptors” by the
energy-momentum-current is responsible due to its intensity, through the way
of its spacetime variability, for the quality of the reception. Here I would like
to describe this manner for a rarely simple relation for object and subject.

We think of moving, single, light emitting point-mass particles in the four-
dimensional physical world, namely the star. For the sake of simplicity we
use geometric optics where the worldlines of the light emitted by the stars are
geodesics. In general the equations, with the use of a suitable parameter s, of a
geodesic worldline are:

d2xi

ds2
+
{

kh
i

} dxk

ds

dxh

ds
= 0. (4)

From this you obtain

F ≡ gik
dxi

ds

dxk

ds
= const.

The singular geodesic worldlines are recognized in that way that for them the
constant results in zero (while for the worldlines for mass particles the constant
is positive). We simplify the consciousness, the ”Monad”, to a ”point-like
eye”. In each moment of its life it takes up a certain point of the spacetime, it
describes a worldline. Those points of the worldline it experiences them timely
as step-by-step. We concentrate on a certain moment; at the point P, in which
it takes up the ”Monad”, the potentials for the gravitation may have the values
gik; the dxi are supposed to be components of the element e of its worldline,

10footnote
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the ratio of the dxi indicate their world-direction (velocity). We have to assume
that the direction is timelike, so that for them it results in

ds2 = gikdxidxk > 0.

Instead of writing dxi for the derivatives I will use xi since all our observations
refer to the same point P .

Two line-elements xi, x′i are orthogonal if

gikxix
′
k = 0.

A priori I claim that all (from P outgoing) line-elements, which are orthogonal to
the timelike e, are on their part spacelike, so that they stretch an infinitesimally
small three-dimension region <, which is imposed a positive-definite measure
by the form −ds2. The ”Monad” experiences this region < as its immediate
”special environment”. In order to prove our ”claim” we assume e to be the
fourth coordinate axis; then the first three components of e are equal to zero
and g44 > 0. Now, we can put

ds2 = Σ4
i,k=1 gikxixk = g44

(
x4 +

g14

g44
x1 +

g24

g44
x2 +

g34

g44
x3

)2

− quadr. F.(x1 x2 x3).

If we introduce
x4 +

g14

g44
x1 +

g24

g44
x2 +

g34

g44
x3

as the fourth coordinate in place of the x4 so far, we get

ds2 = g44x
2
4 −Q(x1 x2 x3).

Because ds2 has the signature 3, the quadratic form Q has to be positive-definite.
All and only those elements for which x4 = 0 are orthogonal to e. With that we
have proved our ”claim”. Furthermore, we are able to see that each line-element
can be split up in a unique way in two terms of a sum where one is parallel to e
(with components proportional to e) and the other is perpendicular to e. That
second term we label as the ”space-direction” of the line-element. Various space-
directions, which are perpendicular to e, form an angle that can be determined in
the usual way with the quadratic form −ds2 which is positive for those. The so
determined angle of the space-direction of the worldlines of two light signals that
arrive in the point P from two different stars is identified with the angle between
the two directions (in a visual concept) in which a point eye catches sight of
those two stars at that moment. We take theses differences in direction as at
least approximate, straight and visually detectable; indeed in seeing there isn’t
only a quality aspect given by the perception but also this quality as a special
extension (a moment that cannot be reduced to the base of the perception
in any kind). With the use of suitable instrumentation for observation, the
determination of the angular distribution is more accurate; whereas the only
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power for consciousness is left in the distinguishing or undistinguishing of two
directions (such as alignment of cross-hairs and stars, reading the scale of the
semi-circle). This easy scheme is enough in order to describe the principle ways
in which the observations of stars can be used for checking of Einstein’s theory.

In connexion with the previous I would like to show how easy it is to derive
the Fermat Principle of least time from the general principle ”The worldline
of a light signal is a geodesic line” in the case of a static gravitational field.
We choose the parameter s for the representation of the geodesic line in a way
that corresponds to equation (4), and so it is characterized by the variational
principle

δ

∫
Fds = 0, (5)

true for a virtual displacement for which the endpoints of the considered world
line-element stay fixed. Except for the singular worldlines it is possible to con-
sider the equation

δ

∫ √
Fds = 0.

In the static case we put x4 = t; the quadratic formula (1) has the form

fdt2 − dσ2,

where ds2 is a quadratic form of the space derivatives dx1, dx2, dx3, whose co-
efficients are, just as f , the square of the velocity of light, independent of the
time t. In this case, if we only vary t,

δ

∫
Fds = 2

∫
f

dt

ds
dδt =

[
2f

dt

ds
δt

]
− 2

∫
d

ds

(
f

dt

ds

)
δtds. (6)

Therefore,

f
dt

ds
= const. = E.

If we drop the condition that except δx1, δx2, δx3, δt also vanishes on the bound-
ary of the integration, we have to replace (5), as arises from (6), with

δ

∫
Fds = [2Eδt] = 2δ

∫
Edt. (7)

When we vary the special trajectory of the light signal at will, holding the ends
steady, and imagine however the varied curve also being traversed with the
speed of light, thus applies for the original as well as the varied curve,

F = 0, dσ =
√

f · dt,

And (7) becomes

δ

∫
dt = 0 or δ

∫
dσ√

f
= 0,
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which gives the Principle of Fermat. Now the time has been completely elimi-
nated; the last formulation refers alone to the spatial course of the ray of light
and applies only to each piece of it, if this is varied at will with the holding of
the beginning and end points. We can apply the same method in order to de-
rive a minimal principle for the trajectory of a mass point particle in the static
gravitational field. We assume immediately that the point with mass m also
carries the electric charge e and is exposed to an electric field with potential Φ.
By section 1 the variation principle reads, if ds is meant to be the derivative of
the proper time,

δ

{
m

∫
ds + e

∫
Φdt

}
= 0. (8)

If we vary only t, not the spatial coordinates, the left side is,

=
∫ {

mf
dt

ds
+ eΦ

}
dδt.

Thus
mf

dt

ds
+ eΦ = const. = E, (9)

And the variational principle (8) has to be replaced, if we give up the condition
that except δx1, δx2, δx3, δt also vanishes on the boundary of the integration,
with

δ

{
m

∫
ds + e

∫
Φdt

}
= [Eδt] = δ

∫
Edt. (10)

Introducing the value
ds =

√
fdt2 − dσ2

into (9), and setting the abbreviation,

U =
E − eΦ√

f
,

arises the law of the velocity,

Udσ√
f (U2 −m2)

= dt. (11)

When we think of the spatial varied trajectory being traversed, while holding
the ends steady, in particular with the same law for the velocity as the initial
curve, then (9) is also valid for the varied curve. Therefore, we get from (10):

δ

∫ {
m2f

E − eΦ
− (E − eΦ)

}
dt = δ

∫ √
f
(
m2 − U2

)
U

dt = 0.

In that case we can use expression (II) for dt, since this equation holds for all
variations as assumed; thus, the time is eliminated completely and we find that
the spatial trajectory is characterized by the minimal principle11,

δ

∫ √
U2 −m2dσ = 0.

11Levi-Civita
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B. Theory of the static, rotationally symmetric gravitational field.

4. Point-mass with and without electric charge.

For the following it is necessary to make some remarks about the Schwarzschild
gravitational field of the motionless point-mass. A three-dimensional spherically
symmetric line element has, in suitable coordinates, the necessary form

dσ2 = µ(dx2
1 + dx2

2 + dx2
3) + l(xdx1 + xdx2 + xdx3)2,

where µ and l are dependent only on the distance

r =
√

x2
1 + x2

2 + x2
3.

The scale, in which this distance is measured, can be transformed in such a way
that µ = 1; which it will take hereinafter. For the four-dimensional line element
we have to make

dss = fdx2
4 − dσ2,

where f is a function only of r as well. If we put

1 + ir2 = h

and the square root of the determinate hf = ω, so with a short calculation,
which we do properly for the point x1 = r, x2 = 0, x3 = 0, we obtain

H = gik
({

ik
r

}
{rs

s } −
{

ir
s

}{
ks
r

})
and the value − 2lr

h
· ω′

ω
.

The prime indicates differentiation with respect to r. Furthermore, let

− lr3

h
=
(

1
h
− 1
)

r = v;

then you have to solve the variation problem

δ

∫
vω′dr = 0 or δ

∫
ωv′dr = 0;

where v and ω may be treated as the independent varying functions. Variation
in v results in

ω′ = 0, ω = const.

and with the proper transformation over the still arbitrary scale unit time:
ω = 1. Variation of ω results in

v′ = 0, v = const. = −2a;

f =
1
h

= 1− 2a

r
.
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a is linked with the mass m through the equation a = κm; we call a the
gravitational radius of the mass m.

In order to understand better the geometry of the line element ds2 we restrict
ourselves to the plane surface which passes through the equator x3 = 0. If we
introduce polar coordinates

x1 = r, x2 = r sin θ,

we get
dσ2 = hdr2 + r2dθ2.

This line-element characterizes the geometry, which is valid for the following
rotation ellipsoid in Euclidean space with orthogonal coordinates x1, x2, z:

z =
√

8a (r − 2a),

if the same refers to the polar coordinates r, θ, passing through orthogonal
projections on the plane z = 0. The projection covers the outer part of the
sphere r ≥ 2a twice and the inner part not at all. So with natural analytic
continuation, the real space, with the use of coordinates xi, is covered twice in
the region represented by r = 2a. The two overlapping regions are separated by
the sphere r = 2a, on which is located the mass, and the determination of the
mass becomes a singularity, and you will have to call the two halves the outer
and the inner of the mass-point.

Perhaps this is more obvious with the introduction of a different coordinate
system, by which I will have to transform the Schwarzschild equations anyway,
in order to expand further. The transformation equations are

x′1 =
r′

r
x1, x′2 =

r′

r
x2, x′3 =

r′

r
x3; r =

(
r′ +

a

2

)2

· 1
r′

.

If I drop the prime after the transformation, I obtain

dσ2 =
(
1 +

a

2r

)4 (
dx2

1 + dx2
2 + dx2

3

)
, f =

(
r − a/2
r + a/2

)2

. (12)

So in the new coordinates the line element of the gravitational space is conformal
to the Euclidean; the linear enlargement proportion is(

1 +
a

2r

)2

.

dσ2 is regular for all values r > 0, f is always positive and only becomes zero
when

r =
a

2
.

The circumference of the circle x2
1 + x2

2 = r2 is

2πr
(
1 +

a

2r

)2

;
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this function decreases monotonically, if we let r go from +∞ to lower values,
the value 4πa, which is reached when

r =
a

2

then when r decreases to zero, it starts increasing again and increases over all
limits (borders). With the conception above, the region

r >
a

2
,

corresponds to the outer
r <

a

2
,

to the limit of the mass point. With analytical continuation√
f =

r − a/2
r + a/2

becomes negative in the inner part, so the cosmic time and the eigentime are
counter moving for a motionless point in the inner region. (Of course, in Nature,
only the singularity not reaching part of the solution can be realised.)

If the mass-point carries an electric charge and φ is the electric potential,
then by the Lagrangian principle gives, in the CGS-system,

δ

∫ (
vω′ +

x

c2

Φ
′2r2

ω

)
dr = 0.

The variation on v gives

ω′ = 0, ω = const. = 1.

Variation of φ gives

d

rd

(
r2Φ′

ω

)
= 0, ⇒ Φ =

e

r
.

Thus, for the electrostatic potential we obtain the same equation as that without
the consideration of gravitation. The constant e is the electric charge (in the
usual electrostatic scale). But with the variation of ω we obtain

v′ +
x

c2

Φ′2r2

ω2
= 0

and from this it follows that

v = −2a +
x

c2

e2

r
,

1
h

= f = 1− 2a

r
+

x

c2

e2

r2
.
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As you can see, in f there is besides the mass dependent term −2a/r, also
an electric term. a = κm is again the gravitational radius of the mass m.
Analogously the length

a′ =
e
√

x

c

is called the gravitational radius of the electric charge e. If the distance r is
comparable to a, the mass term is approximately 1, but if r ≈ a′ the electric
term is 1. f stays positive for all the values of r if |a′| > a; for an electron the
ratio a′/a is of the magnitude 1020. In distances which are comparable with

a′′ =
e2

mc2

the mass term and the electric term have, for the gravitational potential f , the
same magnitude; only if r is large compared to a”, the ”superposition” principle
is true in the way that the electrostatic potential is determined by the charge
and the gravitational potential by the mass with the usual equations. Thus a”,
a quantity which is on different occasions called the ”radius of the electron”,
can be called the radius of the ”force” sphere. There is the relation a′ =

√
aa”.

After having formulated the field of the mass-point carrying electric charge,
we can, with the help of the last paragraph in section 3, easily calculate the
motion of a test particle under the influence of that field, whose charge and mass
are negligible against the one responsible for the field; the problem is rigorously
solved as in the chargeless case (motion of planets) with elliptic functions.

5.
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