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According to the problem formulation, the time co-ordinate x0 describes the real line < and the mass centre is
the origin of <3. Consequently, the base manifold is taken to be the topological product <×<3=<4. Let x1, x2, x3
be the co-ordinates of the points x∈<3 and let S be the unit sphere x21 + x

2
2 + x

2
3=1. It is customary to consider,

instead of the x1, x2, x3, the polar co-ordinates,

%=
√
x21 + x

2
2 + x

2
3 ∈ <̄+= [0,+∞[ and u=(u1, u2, u3)∈S ,

and thus to replace <3 by the manifold with boudary <̄+×S. to avoid the difficulties resulting from the modification
of the base topology, we limit ourselves to the space <×<3=<4 for topological problems and we make use of polar
co-ordinates only for calculations.
Let us now consider Weyl’s expression (1) for the radially symmetric metrics of <3

dσ2= p(|x|)dx2 + q(|x|)(xdx)2

with the abbreviations

|x|=
√
x21 + x

2
2 + x

2
3, dx2= dx21 + dx

2
2 + dx

2
3, xdx=x1dx1 + x2dx2 + x3dx3 .

Such a metric is said to be expressed in the canonical form if |x|= % is the geodesic distance between the origin
and the point x=(x1, x2, x3) with respect to the metric itself. An easy calculation shows that this condition is
verified if p(%) + %2q(%)= 1, whence the canonical form

dσ2= p(|x|)dx2 +
1

|x|2
(1− p(|x|)) (xdx)2 .

Let dω2 be the metric induced on S by the natural metric dx2 of |Re3. Then %2p(%)dω2 is the metric induced
on the sphere |x|= %= const by the canonical form. Consequently it is convenient to intrioduce the function
g(%)= %

√
p(%) and to use constantly the following expression of the canonical form:
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|x|

)2
dx2 +

1

|x|2

(
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(
g(|x|)
|x|

)2)

(xdx)2

with g(|x|)> 0 for |x|> 0 and g(0)= 0.
Now the problem of the radially symmetric statical field may be formulated as follows. Determine the field at

each point x∈<3 through the geodesic distance |x|= % of this point from the origin. In other words, determine the
space-time metric

ds2= (f(|x|))2 dx20 −

[(
g(|x|)
|x|

)2
dx2 +

1
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(xdx)2

]
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satisfying the equations of gravitation.
Introducing polar co-ordinates for the sake of calculation convenience, we have xdx= %d%, dx2= d%2 + %2dω2,

whence
ds2= (f(%))

2
dx20 −

(
d%2 + (g(%))2dω2

)
.

The equations of gravitation outside the mass are now established as follows:
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fg
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g
=0,

the remaining equations being verified identically. The first two give g′′= f ′g′/f , that is f(%)= g′(%). In other
words the light velocity is equal to the derivative of the curvature radius of the spheres %= const considered with
the induced metric.
Now the first equation gives g − gg

′2=A= const or dg/d%=
√
1−A/g, which leads to the determination of

g(%) by means of the equation

%= const +

∫
dg

√
1−A/g

=C1 +A log
(√
g +

√
g −A

)
+
√
g(g −A) .

It is easy to see that the functions g(%) and f(%)= g′(%)=
√
1−A/g(%) thus obtained satisfy the third equation.

Hence it only remains to determine the constants A and C1. We first remark that F (g)=C1+A log
(√
g +
√
g −A

)
+√

g(g −A) is strictly increasing function convergent to +∞ as g→ +∞, hence its inverse g(%) converges also to
+∞ as %→ +∞. It follows that
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converges to 1 as %→ +∞ and the coefficient (f(%))2=1 − A/g of dx20 can be written 1 − A/g − Aε(%)/% with
lim%→+∞ ε(%)= 0. The well-known approximation for great distances requires A=2km/c

2=2μ. On the other
hand, returning to the base manifold <× <3=<4, we see that the relation

lim
|x|→+∞

g(|x|)
|x|

=1

implies that the metric (1) converges to the pesudo-
Euclidean form dx20 − dx

2 as |x|→ +∞. Substituting the
original positive value A=2μ into F (g) and introducing the
constant %0=C1 + 2μ log

√
2μ, we find the equation

%= %0 + 2μ log

(√
g

2μ
+

√
g

2μ
− 1

)

+
√
g(g − 2μ)

which determines g(%). As
√
g − 2μ must be real, g(%) pos-

sesses the minimum 2μ obtained for %= %0. The value %0
is not known, but it depends probably on the mass m and
even on the characteristics of the matter (Fig. 1).

Fig. 1

1) Suppose first that %0> 0. The obtained metric which is valid outside the mass ds
2=(g′(%))2dx20 − (d%

2 +
(g(%))2dω2) is defined analytically for %> %0 and degenerates on the sphere %= %0 because the light velocity

g′(%)=

√

1−
2μ

g(ρ)

is zero for %= %0. A degenerate space-time form has no physical meaning. Consequently the domain of validity of
our solution is defined by %> %1 for some %1>%0 and its extension for %16 %1 must be made by taking into account
the existence of matter. It is to be noticed that the difference %− g(%) is a strictly increasing function of %, hence
it vanishes for a single value %e of % only if 0<%0 6 2μ.
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2) Suppose secondly that %06 0. This condition contradicts the fact that g(0)= 0. Consequently, it it will be
experimentally verified, there must exist a value %1> 0 such that the solution is valid only for %> %1. It is easy to
get the trajectory of a particle in the radially symmetric field by means of our solution. One must first determine
the function ϕ→ y(ϕ) satisfying the equation

E2

∫
dy

√
2μE22y

3 − E22y2 + 2μy + E
2
1 − 1

= ± ϕ (E1= const, E2= const)

and then the function ϕ→ %(ϕ) which satisfies g(%)= 1/y(ϕ).
To apply this calculation to the case of the Sun, an estimate of %0 is first necessary. But the known phenomena

prove that the value %0 is small in comparison with the distances coming into play. It is then legitimate to take
approximately g(%)= %, and this assumption leads anew to the known values for the deflection of light rays and
the advance of the perihelion of Mercury.
Remark. It is easy to verify that our solution is equivalent to Schwarzschild’s one for %>%0. In fact, on this

open set the equation r= g(%) determines % uniquely and we have d%/dr=1/
√
1− 2μ/r, whence

ds2=

(

1−
2μ

r

)

dx20 −
dr2

1− 2μ/r
− r2dω2 .
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