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ABSTRACT. In a paper dealing with a new formulation of the
Oppenheimer-Volkoff (O-V) equations, J. Smoller and B. Temple prove,
under mild assumptions on the equation of state, that black holes never
form in solutions of the O-V equations. No attempt is made to extend
this conclusion to other situations. In the present paper we prove that the
concept of black hole is universally inconsistent with the Einstein theory
of gravitation.

Dans un article traitant d’une nouvelle formulation des équations de
Oppenheimer-Volkoff, J. Smoller et B. Temple montrent, sous des condi-
tions faiblement restrictives, que le conept de trou noir n’apparâit jamais
dans le solutions de ces équations. Les auteurs ne cherchent pas à étendre
cette conclusion à d’autres situations. Dans le présent article nous mon-
trons que la notion de trou noir est universellement incompatible avec la
thèorie gravitationnele d’Einstein.

1 Introduction

According to O-V equations [1], black holes could form from gravitational col-
lapse in massive stars. However this conslusion is based upon rather flimsy
arguments regarding both the geometrical and the physical ideas involved in
the formulation of the problem. A recent paper by J. Smoller and B. Temple [2]
introduces a new formulation of the O-V equations without making simplified
hypothesis and brings about an entirely different result, namely that black holes
never form in solutions of these equations

”When the pressure is not zero, black holes cannot form in static
spherically symmetric solutions of the Einstein equations for a per-
fect fluid. This implies that the portion of the empty-space Schwarz-
schild solution inside the Schwarzschild radius is disconnected from
the rest of the solution space of the O-V system in the sense that it
cannot be obtained as a limit of the O-V solutions having non-zero
density” [2].
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We see that Smoller and Temple do not reject as unphysical the so-called
Schwarzschild solution inside the Schwarzschild radius; they only prove its in-
consistency with their formulation of the O-V equation of state. In other words
the paper by Smoller and Temple does not reject generally the concept of black
hole. It only proves that the concept of black hole is inconsistent with the new
formulation of the equation of state. So the question remains:

Is the concept of black hole universally inconsistent with the Einstein
theory of gravitation ?

Of course we cannot expect to answer this question in the setting of the Smoller-
Temple computation. These authors take for granted several misleading classical
ideas and do all of their work with the so-called standard form:

ds2 = B(r)dt2 −A(r)dr2 − r2
(
sin2 θ dϕ2 + dθ2

)
(1.1)

Folklore has it that this form contains all the characteristic features of the grav-
itational field generated by a statical spherical distribution of matter. However,
according to a previous investigation [3],[5], basic features regarding the gravi-
tational field in question are not included in the metric (1.1):

a) Although the underlying manifold is the product < × <3, the
metric (1.1) is referred to polar coordinates, namely to the manifold
with boundary <× [0,+∞[×S2. So the world-line <× {(0, 0, 0)} of
the origin disappears. It follows in particular that the isotrophy of
the metric is not conceivable with respect to (1.1).

b) To the form (1.1) there corresponds a metric on < × <3 which
is in general discontinuous at the origin. Moreover the boundary
conditions of the problem cannot be formulated with respect to (1.1).

c) The parameter r occurring in (1.1) is wrongly considered as radial
coordinate. In fact the parameter r has nothing to do with coordi-
nates. It only serves to define the length 2πr of a non-Euclidean
circle (and the area 4πr2 of a non-Euclidean sphere) the radius of
which is neither given nor definable by the solution related to (1.1),
namely by the so-called Schwarzschild solution. In particular the
spherical distribution of matter has neither centre nor radius, it is
inexistent with respect to (1.1).

In view of the preceeding elucidations, it follows that the derivation of the
so-called Schwarzschild solution is inconsistent with fundamental mathematical
principles. Now, since the notion of black hole results from an interpretation of
this solution, it follows that the answer to the posed question does not depend
essentially on the equation of state inside the matter, but on a reexamination
of the problems related to the vacuum solutions.

2 Space-Time metric and Equations of Gravitation
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Isotropic space-time metric <×<3 means: Space-time metric on <×<3 in-
variant by the action of the group, denoted by SΘ(4), consisting of the matrices(

1 OH

OV A

)

with OH = (0, 0, 0), OV =

 0
0
0

 , A ∈ SO(3). It is shown rigorously [5] that

such a metric can be written as

ds2 = a00 (t, ||x||) dt2+2a01 (t, ||x||) (xdx) dt+a11 (t, ||x||) dx2+a22 (t, ||x||) (xdx)2

The functions occurring in it are assumed C∞ on <×<3, i.e. C∞ with respect
to the coordinates t, x1, x2, x3 at every point of <×<3, even at (t, 0, 0, 0). In or-
der to be so, it is necessary and sufficient that the functions a00(t, u), a01(t, u),
a11(t, u), a22(t, u) be C∞ on <× < and moreover even with respect to u ∈ <.

Since a00 = a00(t, ||x||) > 0, we can introduce the C∞ functions

f =
√

a00 f1 =
a01√
a00

which allow to write

ds2 = (fdt + f1 (xdx))2 + a11dx2 +
(
a22 − f2

1

)
(xdx)2

and thus to make explicit the corresponding spatial (positive definite) metric:

−a11dx2 −
(
a22 − f2

1

)
(xdx)2

Next we introduce the positive C∞ functions l1 and l by setting

l21 = −a11, l2 = −a11 −
(
a22 − f2

1

)
||x||2

Then, with ||x|| = ρ, it follows in particulat that the C∞ functions a22− f2
1 can

be written as
l21 − l2

ρ2

(The differentiability of the last expression for ρ = 0 can also be checked directly
by taking into account the condition l1(t, 0) = l(t, 0) and the special properties
of the functions l1 and l). Thus we obtain the general isotropic metric in its
geometrical form

ds2 = f2dt2 + 2ff1 (xdx) dt− l21dx2 +
(

l21−l2

ρ2 + f2
1

)
(xdx)2 (2.1)

where f, f1, l, l1 are functions of (t, ρ).
It is shown that the Ricci tensor {Rαβ} resulting from (2.1) is invariant

by the action of the group SΘ(4) on < × <3. Then, according to the theory
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of SΘ(4)-invariant tensor fields, its components are defined by means of four
functions of (t, ρ) as follows:

R00 = Q00, R01 = xi, Rii = Q11 + x2
i Q22, Rij = xixjQ22,

(i, j = 1, 2, 3; i 6= j)

The curvature scalar R = Q is also a function of (t, ρ).
It is easily seen that, if an energy-momentum tensor {Wαβ} satisifes the

equations of gravitation related to (2.1), then it is SΘ(4)-invariant, so that its
components are also defined by four functions of (t, ρ) in the following way:

W00 = E00,W0i = xiE01,Wii = E11 + x2
i E22,Wij = xixjE22,

(i, j = 1, 2, 3; i 6= j)

By using the preceding notations, we can write down from the outset the system
of the equations of gravitation relative to (2.1) as a system of four equations.
There is no need to introduce polar coordinates in the computations.

Q00 − Q
2 f2 + 8πk

c4 E00 = 0

Q01 − Q
2 ff1 + 8πk

c4 E01 = 0

Q11 − Q
2 l21 + 8πk

c4 E11 = 0

Q22 − Q
2

(
l21−l2

ρ2 + f2
1

)
+ 8πk

c4 E22 = 0

On the other hand the computations are greatly simplified if, instead of f1 and
l1, we introduce the functions h = ρf1 and g = ρl1, which are also significant
geometrically and physically. the function h satisfies the condition |h| ≤ l
which serves to characterize the nature of the coordinate t as time coordinate,
whereas the function g is the curvature redius of the spheres centred at the
origin. Of course h and g are C∞ with respect to (t, ρ) ∈ <× [0,+∞[, but since
ρ = ||x|| is not differentiable at the origin, they are not differentiable on the
subspace < × {(0, 0, 0)} of < × <3. Consequently, whenever we need to check
the differentiability of the metric tensor on the subspace <×{(0, 0, 0)}, we must
return to the functions f1 = h

ρ and l1 = g
ρ which appear in (2.1).

3. Stationary Fields. Vacuum Solutions comparable with New-
ton’s Theory.

If the metric tensor is independent of t, the functions f, h = ρf1, l, g = ρl1
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depend only on ρ, and an easy computation gives

Q00 = f
(
− f ′′

l2 + f ′l′

l3 − 2f ′g′

l2g

)
Q01 = h

ρf Q00

Q11 = 1
ρ2

(
−1 + g′2

l2 + gg′′

l2 − l′gg′

l3 + f ′gg′

fl2

)
Q11 + ρ2Q22 = f ′′

f + 2 g′′

g − f ′l′

fl −
2l′g′

lg + h2

f2 Q00

The equations of gravitation (without cosmological constant) outside the matter
imply Q = R = 0, so that they reduce to the system:

Q00 = 0, Q01 = 0, Q11 = 0, Q11 + ρ2Q22 = 0

On the other hand, since Q00 = 0 implies Q01 = 0, we obtain finally a sustem
of three equations:

−f ′′ + f ′l′

l − 2f ′g′

g = 0 (3.1)

−1 + g′2

l2 + gg′′

l2 − l′gg′

l3 + f ′gg′

fl2 = 0 (3.2)

f ′′

f + 2 g′′

g − f ′l′

fl −
2l′g′

lg = 0 (3.3)

By adding (3.1) to (3.3) we obtain

f ′g′

f = g′′ − l′g′

l (3.4)

and substituting this expression of f ′g′

f into (3.2) we find

−1 +
g′2

l2
+

2gg′′

l2
− 2l′gg′

l3
= 0

whence
d

dρ

(
−g +

gg′2

l2

)
= 0

and

−g + gg′2

l2 = −2A = const. (3.5)

Moreover (3.4) can be written as

l′

l
+

f ′

f
=

g′′

g′

whence
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fl = cg′, (c = const.) (3.6)

So the general stationary solution outside matter is defined by the equations
(3.5) and (3.6). The function h does not appear in them. It remains completely
indeterminate. Of course this circumstance does not mean that h is empty of
physical meaning, as is usually believed. In fact, h is involved in the propagation
function of the light emitted radially from the spherical boundary of the matter,
hence also in the definition of time along the radial geodesics. Specific choices
of h give rise to significant physically definitions of time. This situation differs
radically from that in special relativity where we have to do with a unique
propagation function, namely t − ρ

c . The discussion of the relevant problems
lies beyond the scope of the present paper.

Let us now consider the equation (3.5) which serves to define the curvature
radius g(ρ). If A = 0, we find g′ = l, whence f = c, and the corresponding
metric (2.1) is pseudo-Euclidean. We give up this trivial case and assume A 6= 0
in the sequel. Then the equation (3.5) gives a first significant information,
namely that the obtained from it determination of g(ρ) = ρl1(ρ) does not cover
the whole half-line [0,+∞[. In fact, for ρ = 0 we have g(0) = 0 and then the
equation (3.5) implies A = 0, contrary to our assumption A 6= 0. So we are
certain in advance that the solution g(ρ) of (3.5) is defined on some half-line
[α, +∞[ with α > 0. Since the function l = l(ρ) is not given, it seems impossible
to obtain explicitly the general solution of (3.5) relative to the radial coordinate
ρ. However in the present case we have to do with a stationary field, so that
the geodesic distance ∫ ρ

0

l(u)du = δ, (ρ = ||x||),

is well defined (For a non-stationary field, the geodesic distance is rather incon-
ceivable). So, ρ appears as a strictly increasing function of δ, and we have

dg

dρ
=

dg

dδ

dδ

dρ
= l

dg

dδ
, −g +

g

l2

(
dg

dρ

)2

= −g + g

(
dg

dδ

)2

−g + g

(
dg

dδ

)2

= −2A = const., f = c
dg

dδ
.

Writing again ρ instead of δ, we obtain the system:

−g + gg′2 = −2A = const. (3.7)

f = cg′ (3.8)

This being said, we have now to bring out the relationship between the theories
of Newton and Einstein.

Classically it is believed that, r being a parameter occurring in (1.1), −km
r is

identical with Newton’s potential. This assertion is certainly erroneous. In fact,
the parameter r in Newton’s potential is the Euclidean distance between the
centre of mass and the considered point, whereas the parameter r in (1.1) is the
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curvature radius of non-Euclidean spheres centred at the origin. The classical
approach to the problem identifies erroneously the curvature radius g(ρ) with
a radial coordinate. Thus we see in particular that the commonly used term
”Schwarzschild radius” is meaningless. The Schwarzschild radius is actually a
curvature radius.

Now we pose the fundamental question: Among the solutions defined by
(3.5) and (3.6), which are comparable with Newton’s theory?

Since Newton’s potential is defined by means of the Euclidean distance ||x||,
it is obvious that the required solutions are obtained by choosing as radial
coordinate the geodesic distance between the origin and the point x. In other
words the required solutions are those defined by the equations (3.7) and (3.8).

On the other hand A 6= 0 implies that g = g(ρ) ≥ α > 0, according to
preceding remark, and since

g − 2A = gg′2 ≥ 0 (3.9)

we have finally the equation

dg

dρ
=
√

g − 2A
√

g

which defines g = g(r) as a strictly increasing function of the distance ρ. The
inverse function ρ = F (g) is also strictly increasing and on account of the
equation

dρ

dg
=

√
g

√
g − 2A

its explicit expression is easily obtained:

ρ = F (g) = B +
√

g (g − 2A) + 2A ln
(√

g − 2A +
√

g
)

, B = const.

We see that F (g) → +∞ as g → +∞, hence also g(ρ) → +∞ as ρ → +∞.
Moreover

ρ

g(ρ)
=

F (g)
g

→ 1, as ρ → +∞,

so that
1

g(ρ)
=

1 + ε(ρ)
ρ

with ε(ρ) → 0 as ρ → +∞

and the equation (3.8) gives

f = c

√
1− 2A

g
= c

√
1− 2A

ρ
− 2Aε(ρ)

ρ

On account of the Newtonian approximation, we obtain now by a rigorous rea-
soning the value of the constant A:

A =
km

c2
= µ
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Regarding the constant B, we write it as B = ρo−2µ ln
√

2µ where ρo is another
constant, so that the function g = g(ρ) is obtained lastly by the equation:

ρ = ρo +
√

g (g − 2µ) + 2µ ln
(√

g

2µ
− 1 +

√
g

2µ

)
the validity of which requires g ≥ 2µ in accordance with the condition (3.9).
The solution does not allow to ascribe a definite value to the constant ρo, and
this is why we must take into account all the possible determinations of g(ρ)
for the different values of ρo. However it is to be noticed that the allowable
physically values of ρo will be relatively small. In any case the function g(ρ) is
strictly increasing on the half-line [ρo,+∞[ and its values describe the half-line
[2µ,+∞[ with g(ρo) = 2µ, g′(ρo) = 0.

Suppose first that ρo ≤ 0. If ρ1 denotes the radius of the sphere bounding
the matter, we have necessarily ρ1 > ρo and ρ1 > 0 (the value ρ1 = 0 is excluded
because g(ρ) = ρl1(ρ) vanishes for ρ = 0). The function g(ρ) is physically valid
for ρ ≥ ρ1, so that g(ρ) > 2µ for all ρ ≥ ρ1.

Suppose secondly that ρo > 0. Since f(ρo) = cg′(ρo) = 0, the metric degen-
erates for ρ = ρo, so that it is physically meaningless for ρ = ρo. Consequently,
ρ1 being the radius of the spherical distribution of matter, we have ρ1 > ρo and
g(ρ) > 2µ for all ρ ≥ ρ1.

4 Black holes never appear in solutions of the Einstein equations

We now return to the question: Is the concept of black hole universally
inconsistent with the Einstein theory of gravitation?

We have already noticed that we cannot answer it in the setting of the
Smoller-Temple computations. In fact, these authors are restricted within the
limits of the metric (1.1) which gives rise to misleading results. Moreover,
since the theory of black holes is based upon the assumption that the so-called
Schwarzschild solution inside the Schwarzschild sphere be physically valid, we
have principally to examine the behaviour of the vacuum solutions.

This being said, the stationary solution, brought out in the previous section,
points out a fundamental result: The positive constant 2µ is the greatest lower
bound of the mathematical solution g(ρ) = ρl1(ρ) outside the matter. Moreover,
if ρ1 is the radius of the sphericl distribution of matter, we have g(ρ) = ρl1(ρ) >
2µ for every ρ ≥ ρ1, so that ρ1 > 0.

Thus we can ascertain three fundamental results:

a) The given distribution of matter cannot be reduced to a point.

b) The so-called Schwarzschild vacuum solution for r = g(ρ) ≤ 2µ
is meaningless mathematically and physically.

c) Black holes never form in solutions of the Einstein equations.
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