
Physics. - ’The field of a single centre in EINSTEIN’S theory of
gravitation, and the motion of a particle in that field.’.
By J. Droste. (Communicated by Prof. H. A. Lorentz).

(Communicated in the meeting of May 27, 1916).

In two communications1 I explained a way for the calculation of the field of
one as well as of two centres at rest, with a degree of approximation that is
required to account for all observable phenomena of motion in these fields. For
this I took as a starting-point the equations communicated by EINSTEIN in
19132 EINSTEIN has now succeeded in forming equations which are covariant
for all possible transformations3 and by which the motion of the perihelion of
Mercury is entirely explained4. The calculation of the field should henceforth
be made from the new equations; we will make a beginning by calculating the
field completely and not, as before, only the terms of the first and second order.
After this, we investigate the motion of a body, so small that it does not produce
any observable change in the original field.

1. The equations for the calculation of the field can be got from a principle
of variation. Where matter is absent (Tij = 0) the variation of the integral∫ ∫ ∫ ∫

G
√
−gdx1dx2dx3dx4

must be zero, if the variations of all g’s and their first derivatives be zero at the
three-dimensional limits of the four-dimensional region over which the integral
is extended. Here G represents the quantity

G = 2Σijg
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∂xj
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∂xi
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.

For a centre at rest and symmetrical in all directions it is easily seen that

ds2 = ω2dt2 − u2dr2 − v2
(
dϑ2 + sin2 dϕ2

)
, (2)

ω, u, v only depending on r, and (ϑ, ϕ) representing polar coordinates.
Now, if gij and therefore also gij are all zero, if i 6= j, G breaks up into six

pieces, each of them relating to two indices. We collect the terms belonging to
α and β and name their sum Gxαxβ .

1Volume XVII p. 998 and vol. XVIII p. 760.
2’Entwurf einer verallgemeinerten Relativitatstheorie und einer Theorie der Gravitation’,

TEUBNER. Or : Zeitschrift fur Mathematik und Physik, vol 62.
3’Die Feldgleichungen der Gravitation’ Sitzungsberichte der Kon. Preuss. Akad. der Wiss.

1915, p. 844.
4’Erklarung der Perihelbewegung des Merkur aus der allgemeinen Relativitatstheorie’

Sitzungsberichte der Kon. Preuss. Akad. der Wiss. 1915, p.831.
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Now, if a, b, c represent three different indices,[
ab
c

]
= 0, [aa

c ] = −1
2
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,
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,
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1
2
gaa ∂gaa

∂xb
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a } =
1
2
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∂xa
.

Let the second sum in (1) contribute to Gxαxβ the terms, in which i =
α, j = β, or i = β, j = α. By taking for α and β successively the six couples of
indices and adding the expressions, we get exactly the first sum of (1).

Let the second sum in (1) contribute to Gxαxβ those terms in which one of
the differentiated g′s contains the index α, the other β. So that the sum too
will have been broken up into six pieces, one of which relates to α and β.

In that way we obtain

Gxαxβ = gαα ∂

∂xα

(
gββ ∂gββ

∂xα

)
+gαα ∂

∂xβ

(
gββ ∂gαα

∂xβ

)
+gββ ∂

∂xβ

(
gαα ∂gαα

∂xβ

)
+

+gββ ∂

∂xα

(
gαα ∂gββ

∂xα

)
+ gααgββ Σα6=i 6=β gii ∂gαα

∂xi

∂gββ

∂xi
. (3)

The equations of the field being covariant for all transformations of the
coordinates whatever, we are at liberty to choose instead of r a new variable
which will be such a function of r, that in ds2 the coefficient of the square of its
differential becomes unity. That new variable we name r again and we put

ds2 = ω2dt2 − rd2 − v2
(
dϑ2 + sin2 dϕ2

)
(4)

ω and v only depend on r. We now find

Gtr = −4ω′′

ω
, Gϑr = Gϕr = −4v′′

v
, Gtϑ = Gtϕ = −4v′ω′

vω
, Gϑϕ =

4
v2
− 4v′2

v2
.

In these equations accents represent differentiation with respect to r. So

G =
4
v2
− 4v′2

v2
− 8v′ω′

vω
− 8v′′

v
− 4ω′′

ω
.

Now, as
√
−g = v2ω sinϑ, the function to be integrated in the principle of

variation becomes

4
(
ω − ωv′2 − 2vv′ω′ − 2vωv′′ − v2ω′′

)
sinϑ.

We now apply the principle to the region t1 ≤ t ≤ t2, r1 ≤ r ≤ r2. By
effecting the integrations with respect to t, ϑ and ϕ we find the condition

δ

∫ r2

r1

(
ω − ωv′2 − 2vv′ω′ − 2vωv′′ − v2ω′′

)
dr = 0.
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This gives us
2vv′′ + v′2 = 1 (5)

and
vω′′ + v′ω′ + ωv′′ = 0. (6)

These are the equations of the field required.

2. To solve (6), we introduce instead of r the quantity x = v′ as an indepen-
dent variable by which, on taking account of (5), (6) changes into

(
1− x2

) d2ω

dx2
− 2x

dω

dx
+ 2ω = 0.

This equation is satisfied by ω = x. The other particular solution is now
also easyily found, viz.

ω = 1− 1
2
x log

1− x

1 + x
.

But we want ω to be a finite constant if v′ = 1 (for r = ∞). Then ω must be
equal to x, if we take the constant to be 1 (the speed of light then approaches
to 1 at large distances from the centre).

The introduction of x in (5) gives

dv

dx
=

2xv
1− x2

,

from which we immediately find

v =
α

1− x2
,

α being a constant of integration.
Differentiating this relation with respect to r, we get

v′ =
2αx

(1− x2)2
dx

dr

or, v′ being equal to x,

dr =
2αdx

(1− x2)2
.

So (4) changes into

ds2 = x2dt2 − 4α2

(1− x2)4
dx2 − α2

(1− x2)2
(
dϑ2 + sin2 ϑdϕ2

)
.

So we have now been led again to introduce another variable instead of r,
viz. x. The form obtained leads us to introducing the variable ξ = 1−x2. Then

ds2 = (1− ξ) dt2 − 4α2

(1− ξ) ξ4
dξ2 − α2

ξ2
(
dϑ2 + sin2 ϑdϕ2

)
.
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Lastly we put
ξ =

α

r
.

This r is not the same as occurs in (4). We obtain

ds2 =
(
1− α

r

)
dt2 − dr2

1− α
r

− r2
(
dθ2 + sin2 ϑdϕ2

)
. (7)

We have chosen the coordinates in a particular manner; it is now of course
also very easy to introduce for r another variable, which is a function of r5.

3. From (7) we can immediately deduce some conclusions. The point (r, ϑ, ϕ)
lies at a distance

δ =
∫ r

α

dr√
1− 1

r

= r

√
1− α

r
+ α log

(√
r

α
− 1 +

√
r

α

)
, (8)

from the point, where the radius intersects sphere r = α, if r > α and supposing
that (7) remains valid up to r = α. In future we will always make these two
suppositions; as we shall see, that a moving particle outside sphere r = α can
never pass that sphere, we may, in studying its motion, disregard the space
r < α. Should (7) cease to be valid as soon as r becomes < R, we need only
exclude the space r < R from the conclusions which will still be made, to make
them valid again.

If r be very large with respect to α, the proportion δ : r approaches 1.
The circumference of a circle r = const. is 2πr by (7); this shows how r can

be measured. Circle α has the circumference 2πα.
One might in (7) perform a sunstitution t = f(r, τ). Then a term containing

drdτ would arise and the velocity c of light, travelling along r, would have to
be calculated from an equation of the form

F1(r, τ) + F2(r, τ)c− F3(r, t)c2 = 0

and would have two values, one for light coming from the centre, the other
for light moving towards it. Moreover these values would depend on t. In
consequence of the last fact we should not name the field stationary and the
first fact does not agree with the way in which time is compared in two different
places. So, if we want to retain both advantages, such s substitution is not
allowed, though it may, of course, always be done, if we are willing to give up
these advantages.

We will point out that, as (7) is known now, G can be found as a function
of r. The result is G = 0, as it must always be found where matter is absent.

5After the communication to the Academy of my calculations, I discovered that also K.
SCHWARZSCHILD has calculated the field. Vid.: Sitzungsberichte der der Kon. Preuss.
Akad. der Wiss. 1916, page 189. Equation (7) agrees with (14) there, if R is read instead of
r.
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4. We now proceed to the calculation of the equations of motion of a particle
in the field.

The equations of motion express the fact that the first variation of the inte-
gral ∫ t2

t1

Ldt

will be zero, if the varied positions for t = t1 and t = t2 are the same as the
actual ones. L represents the quantity

L =
ds

dt
=

√
1− α

r
− ṙ2

1− α
r

− r2ϑ̇2 − r2 sin2 ϑϕ̇2, (9)

where
ṙ =

dr

dt
, ϑ̇ =

dϑ

dt
, ϕ̇ =

dϕ

dt
.

One of the equations of motion is

d

dt

(
∂L

∂ϕ̇

)
= 0

or
r2 sin2 ϑ ϕ̇

L
= const.,

which proves that ϕ̇, once being zero, keeps that value.
Now, as we can always choose ϑ and ϕ in such a way that ϕ̇ becomes zero

for a certain value of t and as ϕ will then always remain zero, the motion takes
place in a plane.

We choose the coordinates in such a manner, that this plane becomes the
plane ϑ = π

2 . Then (9) passes into

L =

√
1− α

r
− ṙ2

1− α
r

− r2ϕ̇2. (10)

The equations of motion are

d

dt

(
∂L

∂ϕ̇

)
= 0,

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
= 0. (11)

From these two it follows that

d

dt

(
L− ṙ

∂L

∂ṙ
− ϕ̇

∂L

∂ϕ̇

)
= 0

or
d

dt

(
1− α

r

L

)
= 0. (12)
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Instead of the two equations (11) we may consider the system, consisting of
(11) and (12). The two systems are equivalent only in case ṙ 6= 0; so for the
circular motion we shall have to return to the second equation (10).

We now obtain

1− α
r

L
= const.,

r2ϕ̇

L
= const.,

and so
r2ϕ̇

1− α
r

= const.

This yields the equations

1
1− α

r

− ṙ2(
1− α

r

)3 −
r2ϕ̇2(

1− α
r

)2 = A (13)

and
r2ϕ̇2

1− α
r

= B. (14)

We will now just express the quantities ϕ̈ and r̈ in ϕ̇, r and ṙ; this is easily
done by differentiating (13) and (14) with respect to t. The result is

ϕ̈ =
ϕ̇ṙ

1− 1
r

α

r2
− 2ϕ̇ṙ

r
, (15)

and

r̈ = − α

2r2
(
1− α

r

)
+

3
2
α

r2
ṙ2

1− α
r

+ rϕ̇2
(
1− α

r

)
. (16)

5. From (15) and (16) it follows if ṙ = ϕ̇ = 0

ϕ̈ = 0, r̈ = − α

2r2
(
1− α

r

)
.

This is the acceleration in case of a particle at rest. It is directed towards
the centre.

r̈ has its greatest value (at rest) at the distance r = 3
2α from the centre; the

greatest value of δ̈ is attained for r = 5
4α.

6. The motion may be circular. As ṙ is then continually zero, we return to
the equations (11). the second shows

∂L

∂r
= 0,

i.e.
ϕ̇2 =

α

2r3
. (17)

Substituting this in (10) and putting ṙ = 0 we find

L2 = 1− 3α
2r
,
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so that r must be > 3
2α, if L2 or, what comes to the same thing, ds2 shall be

positive.
Formula (17) is the same as in NEWTON’S theory.

7. We will now consider the case of ϕ̇ being continually zero, i.e. that the
particle always moves on the same radius. From (13) we easily conclude (we
shall afterwoods show this in general i.e. if ϕ̇ be not identical zero) that the
particle never reaches sphere r = α.

If we call

δ̇ =
ṙ(

1− α
r

) 1
2
, δ̈ =

dδ̇

dt

for abbreviation velocity and acceleration, then (13) gives us for the velocity
the formula

δ̇2 =
(
1− α

r

) (
1−A+A

α

r

)
(18)

and (16) for the acceleration

δ̈ = − α

2r2

[√
1− α

r
− 2δ̇2√

1− α
r

]
. (19)

If we substitute (18) in (19) we obtain

δ̈ =
α

2r2
(
1− 2A+ 2A

α

r

) √
1− α

r
. (20)

From (19) it follows, that the algebraic value of the acceleration only depends
on the position and the velocity of the particle and does not change if we reverse
the direction of the velocity. The constant A is never negative (as L > 0). If
A lies between 0 and 1 (A = 1 included), then every value of r is possible
according to (18). We then have a particle moving towards infinity or coming
from it. For this motion the acceleration will, according to (20), once become
zero, if 2A− 1 > 0, i.e. A > 1

2 , viz. for

r =
2Aα

2A− 1
;

for greater values of r the acceleration is directed towards the centre (attrac-
tion), for smaller values of r from the centre (repulsion). The acceleration is
then zero in these positions viz. r = α, r = 2Aα

(A−1) , r = ∞. In the first in-
terval there will be a repulsion, in the second attraction; within either interval
there is an extreme. If A > 1 then, according to (18), r cannot be greater than

Aα
(A−1) . Then the motion is that of a particle first going away from the centre
and then returning when r = Aα

(A−1) . The value 2Aα
(2A−1) , of r, for which the

acceleration becomes zero, is smaller than Aα
(A−1) . The particle ascends (during

which there is first repulsion); at a given moment the acceleration becomes zero
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for r = 2Aα
(2A−1) ; then we get attraction, which for r = Aα

(A−1) has exhausted
the motion and makes it return; the acceleration of the reversed motion is first
positive, then becomes negative for r = 2Aα

(2A−1) and the motion stops (infinitely
slowly) for r = α. In case that A lies between 0 and 1

2 so that r can have all
values, there is no point where the acceleration becomes zero. According to (20)
there is then always repulsion; the velocity is maximum at an infinite distance
viz., according to (18),

√
1−A which lies between 1

2

√
2 and 1.

8. We now return to the general case, where neither ṙ nor ϕ̇ are continu-
ally zero. We must then take equations (13) and (14) as a starting point; by
eliminating dt we find

1
1− α

r

− B2

r4
· 1
1− α

r

(
dr

dϕ

)2

− B2

r2
= A. (21)

Expressing dϕ in r and dr we obtain

dϕ =
Bdr

r2
√

1−
(
A+ B2

r2

) (
1− α

r

) .
Putting now α

r = x, we get

dϕ =
−dx√

x3 − x2 + Aα2

B2 x+ (1−A)α2

B2

.

So ϕ becomes an elliptic integral in the variable r, and r therefore an elliptic
function of ϕ. Of

x3 − x2 +
Aα2

B2
x+

(1−A)α2

B2
= 0

let x1, x2, x3 be the roots, so that

x1 + x2 + x3 = 1, x1x2 + x2x3 + x3x1 =
Aα2

B2
, x1x2x3 =

(A− 1)α2

B2
, (22)

then we can introduce as constants of integration the quantities x1, x2, x3 (con-
nected by the relation x1 + x2 + x3 = 1) instead of A and B.

If we now introduce a new variable

z = x− 1
3

putting

e1 = x1 −
1
3
,

e2 = x2 −
1
3
,

e3 = x1 −
1
3
,
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we obtain
dϕ =

−αz√
(z − e1) (z − e2) (z − e3)

, (23)

and we have
e1 + e2 + e3 = 0, (24)

Now, introducing the ρ-function with the roots e1, e2, e3, we get

z = ρ
(

1
2ϕ+ C

)
,

where C is a constant of integration, which may be complex; the real part is
without signification as it only determines the direction in which ϕ will be zero.
We take

z = ρ
(

1
2ϕ+ is

)
,

(25)

and then find

α
r = 1

3+ ρ
(

1
2ϕ+ is

)
.

(26)

From (14) now follows

Bdt =
r2

1− α
r

=
α2dϕ

x2 (1− x)
= −α2 dx

x2 (1− x)
√

(x− x1) (x− x2) (x− x3)

or
B

α2
dt =

−dz(
z + 1

3

)2 (
2
3 − z

) √
(z − e1) (z − e2) (z − e3)

. (27)

The problem under consideration gives rise to four constants of integration;
two of which are e1 and e2, the two others s (which can have only particu-
lar values) and a constant which arises after integration of (27) and is of no
consequence as it only determines the moment at which t = 0.

From (27) it now follows immediately that the particle can never reach sphere
r = α. For, if r became α, then z became 2

3 ; (27) shows that this would require
an infinitely long time. Sphere r = α, therefore, is never reached.

It also follows from (27) that an infinitely long time is required for z to reach
− 1

3 . This is not at all strange, z = − 1
3 corresponding to r = ∞. It may occur (if

two e’s coincide) that there is still another value of r which cannot be attained,
but is gradually approached; we will treat this case where it occurs.

9. Let us now first consider the case e1 = e2 = e3 = 0.
Equation (23) becomes

dϕ =
αz

z
3
2
, (28)
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so
ϕ =

2√
z

=
2√

α
r −

1
3

. (29)

The value 3α of r, corresponding to z = 0, is, as is seen from (27), a value
which is not attained. (29) shows that the motion takes place in a spiral which,
extending to circle r = α, making there with the radius a finite angle, and,
turning an infinite number of times, approaches to circle r = 3α on the inside.
The particle can never get out of sphere r = 3α and a motion such that the
particle were from the beginning outside sphere r = α (and such that e1 = e2 =

e3 = 0), is impossible according to (28), as
(

dz
dϕ

)2

should be negative.

When r approaches to 3α then ϕ approaches to 1
3α
√

6
and consequently the

velocity to 1√
6
.

10. We now come to the case of two e’s being equal and different from the
third. Calling (the three e’s being real) the greatest e1 the smallest e3, we have
two cases, viz.

e2 = e3 = −1
2
e1, e1 = e2 = −1

2
e3.

We first turn to the case e2 = e3 = − 1
2e1.

Excluding as before the interior of sphere r = α, r must be > α, so z < 2
3 .

We put e2 = e3 = −α2, e1 = 2α2; α be positive. Then (23) passes into

dϕ =
−dz

(z + α2)
√
z − 2α2

.

It is seen that z must be greater than 2α2, and, as z must be smaller that
2
3 , we must have

2α2 <
2
3
. (30)

If 2α2 = 2
3 , the particle is at rest on sphere r = α.

Now putting z = 2α2 + y2 we get

1
2
dϕ =

−dy
y2 + 3α2

,

and so

y = −α
√

3 tg
(

1
2
αϕ
√

3
)
.

This gives us
r =

α
1
3 + 2α2 + 3α2 tg2

(
1
2αϕ

√
3
) . (31)

The case α = 0 has been discussed in 9: we therefore put α 6= 0. When
ϕ = 0, r = α :

(
1
3 + 2α2

)
, i.e. a value between r = α and r = 3α. When ϕ

approaches to π : α
√

3 (a value which, from (30), exceeds π) r should approach
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to zero, according to (31). But first r must become equal to α, viz. when ϕ
becomes

ϕ = ϕo =
2

α
√

3
· arc tg

√
2− 6α2

3α

and for this, according to (27), an infinite time is required as then z = 2
3 . So

the motion is as follows: ϕ changes from −ϕo to ϕo, corresponding to r = α.
The greatest value of r is reached at the moment when ϕ = 0, viz.

r =
α

1
3 + 2α2

< 3α;

when ϕ = −ϕo (as well as when ϕ = ϕo) r becomes α. If r approaches to
zero, ϕo increases indefinitely and the motion approaches more and more to
that which has been discussed in 9.

11. The case e1 = e2 = − 1
2e3.

Put e1 = e2 = α2, e3 = −2α2, then (23) passes into

dϕ =
−dz

(z − α2)
√
z + 2α2

. (32)

As z > −2α2, we may put z = −2α2 + y2. Then we get

dϕ = − 2 dy
y2 − 3α2

.

Now, if z > α2, and therefore y2 > 3α2, we get

y = α
√

3 cotgh
(

1
2
αϕ
√

3
)
,

and
r =

α
1
3 − 2α2 + 3α2 cotgh2

(
1
2αϕ

√
3
) . (33)

If, on the contrary, z < α2 and consequently y2 < 3α2,

y = α
√

3 tgh
(

1
2
αϕ
√

3
)
,

and so
r =

α
1
3 − 2α2 + 3α2 tgh2

(
1
2αϕ

√
3
) . (34)

z cannot pass α2 and must moreover lie between − 1
3 and 2

3 .
So we have the following cases:
A. α2 ≥ 2

3 . z lies between − 1
3 and 2

3 ; formula (34) holds: r varies between
∞ and α; the first value is attained for

ϕ = ϕ1 =
1

α
√

3
log

α
√

3 +
√

2α2 − 2
3

α
√

3−
√

2α2 − 1
3

,
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and the second for

ϕ = ϕ2 =
1

α
√

3
log

α
√

3 +
√

2α2 + 2
3

α
√

3 +
√

2α2 + 2
3

.

An infinitely long time is required to reach either position.
B. α2 < 2

3 ; z between α and 2
3 . formula (33) must be applied; r varies

between α :
(

1
3 + α2

)
and α; ϕ then changes from ∞ to

ϕ = ϕ3 =
1

α
√

3
log

√
2α2 + 2

3 + α
√

3√
2α2 + 2

3 − α
√

3
.

The orbit comes from r = α and approaches in a spiral to circle r = α :(
1
3 + α2

)
.

C. 1
6 ≤ α2 < 2

3 ; z between − 1
3 and α2. Formula (34) now holds; r varies

between ∞ and α :
(

1
3 + α2

)
; ϕ changes from ϕ1 to ∞. The orbit comes from

infinity and turns in a spiral round the circle r = α :
(

1
3 + α2

)
which lies between

circle 2α and circle α.
D. α2 < 1

6 ; z between −2α2 and α2. Formula (34) must be applied; r varies
between α :

(
1
3 − 2α2

)
and α :

(
1
3 + α2

)
; ϕ changes from 0 to ∞. The orbit is a

spiral, coming from circle α :
(

1
3 − 2α2

)
, which may have any radius > 3α, and

approaching in a infinite number of turnings to circle α :
(

1
3 + α2

)
, which lies

between circle 2α and circle 3α.
12. Now we will suppose the roots e1, e2, e3 to be all different. As regards

these roots, we may then distinguish two main cases, viz. the case of three real
roots and the case of one real and two conjugate complex roots. In the first
case we put e1 > e2 > e3, in the second e2 be the real root and the imaginary
part of e1 be positive. In either case we put, as usual, e1 = ρω1, e2 = ρω2, e3 =
ρω3, with ω2 = ω1 + ω3 (not −ω1 − ω3).

The three roots are real. the only values possible for i s in equation (25) now
are 0 and ω3 (or congruent values). In the first case z varies from ∞ to e1 and
from e1 to ∞, while ϕ changes from 0 to 2ω1 and from 2ω1 to 4ω1. One must,
however, remember that, according to (27), z may not exceed the values − 1

3
and 2

3 (i.e. r = ∞ and r = α), but must remain between them. So if e1 > 2
3 , it

is impossible for i s to be zero. If e1 < 2
3 , z varies between e1 and 2

3 and so r
between α

( 1
3+e1) and α. This case corresponds to 10 and 11 B into which it

passes when e2 = e3 = − 1
2e1 and when e2 = −2e1.

In the other case (i s ≡ ω3) z varies from e3 to e2 and from e2 to e3, while
ϕ changes from 0 to 2ω1 and from 2ω1 to 4ω1. There are various cases:

A. e2 ≥ 2
3 . z varies between − 1

3 and 2
3 , ϕ between ϕ1 and ϕ2 for which

− 1
3 = ρ

(
1
2ϕ1 + ω3

)
and 2

3 = ρ
(

1
2ϕ2 + ω3

)
;

ϕ1 lies between 0 and ω1, ϕ2 between 0 and 2ω1 (ϕ2 > ϕ1). r changes between
∞ and α. This case corresponds to 11A and passes into it for e2 = e1 = − 1

3 .
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B. e3 ≤ − 1
3 , e2 <

2
3 . z varies between − 1

3 and e2, ϕ between ϕ1 and 2ω1;
r changes from ∞ to α

( 1
3+e2) , a value between 2α and α. This corresponds to

11C, in which it passes for e1 = e2, ω1 then becoming infinite.
C. e3 > − 1

3 , e2 <
1
6 . z varies between e3 and e2, ϕ between −∞ and +∞;

r changes from α

( 1
3+e3) , which may have all values > 3α, to α

( 1
3+e2) , which may

have all values between 2α and α. The case corresponds to 11D, in which it
passes for e1 = e2 > 0; if e2 < 0 there is no corresponding degenerated case.

Two roots are conjugate complex. The value which in (25) is possible for is
is 0. then z varies from ∞ to e2 and back. So if e2 ≥ 2

3 this case is impossible.
If − 1

3 < e2 <
2
3 , z varies between 2

3 and e2, ϕ between a value ϕ3 for which

ρ
(

1
2ϕ3

)
= 2

3

(situated between 0 and 2ω3) and 4ω2−ϕ3. r changes from α to α

( 1
3+e2) , which

may have any value > α, and then returns to α. This case can pass into 10, if
e1 and e3 approach to the same negative value; and, if e2 becomes negative, it
may divide itself into 11B on the one hand and 11C or 11D on the other
(11C if e2 < − 1

3 , 11D if e2 > − 1
3 ,).

We now have a survey of all possible motions. We must, however, remark
that not all the motions take place with a velocity smaller than that of light,
as in case of some of them (e.g. 11A and 12A) A and so also L is negative.
We have not separately mentioned all those cases. In 11 e.g. α2 < 1

3 , means
that the velocities are smaller than that of light. In 12 for that purpose e1e2 +
e2e3 + e3e1 has to be > − 1

3 .
13. It is now necessary to consider the place taken up in this survey by the

well-known motions of the planets and comets. These motions all take place
with small velocities; we will call a quantity such as the square of the velocity of
a planet, a quantity of the first order. In NEWTON’S theory, which accounts
very exactly for the motions, α : r is found to be of the same order as the square
of a velocity; this we take from NEWTON’S theory. In (13) A must then be a
quantity, differing little from 1; we represent it by

A = 1 +
µα

λ2
.

In (14) B is a quantity of order 1
2 . We represent is by

B =
√
α : λ

and take λ positive. The constants λ and µ then take the places of A and B. If
we substitute these constants in (21), this equation becomes

λ2

r
· 1
1− α

r

1
r4

(
dr

dϕ

)2

− 1
r2

= µ. (35)
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The constants λ and µ are moderately great. The formula passes into the
corresponding one of NEWTON’S theory, if we put α = 0. We then obtain

λ2

r
− 1
r4

(
dr

dϕ

)2

− 1
r2

= µ. (36)

The equation gives rise to an ellipse, if µ is positive, to a parabola if µ = 0,
to a hyperbola if µ is negative. In NEWTON’S theory 4µ < λ4. In consequence
of the introduction of the constants λ and µ the equations pass into

x1 + x2 + x3 = 1, x1x2 + x2x3 + x3x1 = α
(
λ2 + µα

)
, x1x2x3 = µα2. (37)

We see from these that the roots x1, x2, x3 approach very nearly to 1, 0, 0.
The quantity α

(
λ2 + µα

)
is positive. Because µ < 1

4λ
4 the roots prove to be

all real. x1 is somewhat smaller than 1, about αλ2;x2 and x3 are of the order
of α; they are both positive if µ is positive, else they have opposite signs; x3

becomes zero if µ = 0. We will therefore put

x1 = 1− 2αm,

x2 = α (m+ n) ,

x3 = α (m− n) .

Now x1 + x2 + x3 = 0 as it ought to be; if n < m we have to deal with the
quasi-elliptic motion, if n > m with the quasi-hyperbolic, if n = m with the
quasi-parabolic. The constants m and n take the places of λ and µ. We obtain

e1 =
2
3
− 2αm,

e2 = −1
3

+ α (m+ n) ,

e3 = −1
3

+ α (m− n) . (38)

In (22) and (26) we now take, in the case of elliptic motion, is = ω3, as
ϕ increases indefinitely, z remaining finite. In the case of the parabolic and
hyperbolic motion r becomes infinite and so z = − 1

3 ; z moves bewteen e3 and
e2 and again is = ω3. So (26) becomes

α
r = 1

3+ ρ
(

1
2ϕ+ ω3

)
.

Now we have the formula

ρ
(

1
2ϕ+ ω3

)
= e3 + (e1 − e3) (e2 − e3)÷ (ρ 1

2ϕ− e3),

and so

α
r = 1

3 + e3 + (e1 − e3) (e2 − e3)÷ (ρ 1
2ϕ− e3),

or from (38)

14



1
r = m− n+ 2n (e1 − e3)÷ (ρ 1

2ϕ− e3).

(39)

This is the equation of the orbit required. If we now let α become zero, e3
and e2 coincide, e1 − e3 becomes 1, and the ρ-function degenerates. We then
obtain

1
r

= m− n+ 2n sin2 1
2
ϕ = m− n cosϕ (40)

and this equation shows once more that, if α 6= 0, for n < m the motion is
(quasi-)elliptic, for m > n (quasi)-hyperbolic, for n = m (quasi)-parabolic. For
n = 0 it is circular, also if α is not supposed to be zero. The elliptic case is case
12 C, the hyperbolic is 12 B, the parabolic is 12 B, e3 being supposed to
be − 1

3 there.
14. Let us now examine the motion of the planets a little more in de-

tail. Equation (39) shows that 4ω1 is the period; as the ρ-function is almost
degenerated we may take

4ω1 =
4π√

e1 − e3 +
√
e1 − e2

. (41)

A further approximation is not necessary as, after expanding the roots in a
series of ascending powers of α, the terms of degree 0 and 1 do not change any
longer. From (41) it follows in this way

4ω1 = 2π
(

1 +
3
2
αm

)
= 2π + 3αmπ.

Now (39) shows that m − n is the smallest, m + n the greatest value of 1
r .

From this or from (40) it follows that m is the reciprocal value of the parameter
p of the orbit and n

m represents the eccentricity; so

e =
n

m
, p =

1
m
. (42)

This gives for the motion of the perihelion per period 3απ
p corresponding to

the value calculated by EINSTEIN.
To conclude we will calculate the periodic time. From (14) follows

Bdt =
r2dϕ

1− α
r

.

If we put in this α = 0 we obtain the corresponding equation of NEW-
TON’S theory; we may therefore expand the denominator and obtain as a first
approximation

Bdt = r2
(
1 +

α

r

)
dϕ = r2dϕ+ αrdϕ. (43)
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We must now substitute for r the value taken from (39). Let us for a moment
introduce the elliptic function sn with the modulus k, defined by

k2 =
e2 − e3
e1 − e3

=
2αn

1− 3αm+ αn
, (44)

(39) passes into
1
r

= m− n+ 2n sn2 1
2
ϕ
√
e1 − e3; (45)

k2 is of the first order, and consequently very small. If we put

sinψ = sn
1
2
ϕ
√
e1 − e2, (46)

we find by differentiation

cosψ dψ =
1
2
√
e1 − e3

√(
1− sin2 ψ

) (
1− k2 sin2 ψ

)
dϕ

or
1
2
√
e1 − e3 dϕ =

dϕ√
1− k2 sin2 ψ

.

Now as (45) passes into

1
r

= m− n+ 2n sin2 ψ,

(43) becomes

1
2
B
√
e1 − e3 dt =

dψ(
m− n+ 2n sin2 ψ

)2 √
1− k2 sin2 ψ

+

+
αdψ(

m− n+ 2n sin2 ψ
) √

1− k2 sin2 ψ
.

If α = k = 0 we pass into NEWTON’S theory. So in the first fraction we
may expand the denominator and neglect k4, etc., and in the second fraction
we may put k = 0. Putting k2 = 2αn in the first fraction we obtain

1
2
B
√
e1 − e3 dt =

1 + αn sin2 ψ(
m− n+ 2n sin2 ψ

)2 dψ +
αdψ(

m− n+ 2n sin2 ψ
)

=
1− 1

2α (m− n)(
m− n+ 2n sin2 ψ

)2 dψ +
3
2αdψ(

m− n+ 2n sin2 ψ
) . (47)

From the values of x1, x2, x3 we get, considering (22),

B
√
e1 − e3 =

√
α

2m

(
1− 3αm+ αn

1− 2αm+ α2 (m2 − n2)

) 1
2

.
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We may write

B−1 (e1 − e3)
− 1

2 =

√
2m
α

[
1 +

1
2
α (m− n)

]
and so (47) passes into

1
2

√
α

2m
dt =

dψ(
m− n+ 2n sin2 ψ

)2 +
3
2αdψ(

m− n+ 2n sin2 ψ
) .

We will call the time in which r is periodic the periodic time; it is the time
in which ϕ increases by 4ω1 and ψ by π. So

1
2

√
α

2m
T =

∫ π

0

dψ(
m− n+ 2n sin2 ψ

)2 +
3
2
α

∫ π

0

dψ(
m− n+ 2n sin2 ψ

) =

=
πm

(m2 − n2)
3
2

+
3
2απ

(m2 − n2)
1
2
.

In connection with (42) we get from this, a representing half the major axis:
√
α

2π
√

2
T = a

3
2 +

3
2
αa

1
2 ,

or with the same degree of approximation
√
α

2π
√

2
T = (a+ α)

3
2 .

We so obtain KEPLER’S third law

(a+ α)3

T 2
=

α

8π2
. (48)

We can also ask after the time required by ϕ to increase by 2π. This time
depends on the place from which the planet starts; it is greatest for the peri-
helion, smallest for the aphelion. As a mean value of all these times we may
consider

T1 = T

(
1− 3α

2p

)
.

For this time KEPLER’S third law becomes(
a− αe2

1− e2

)3

: T 2
1 =

α

8π2
.

This deviates from KEPLER’S law less than (48).

———————————-
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