
NOTE: Below are my answers to Professor Paul Davies. He wrote to Professor John K. 
Webb about my work and his stupid remarks to Webb are in bold type. My replies are in 
normal text.  

 

 

My initial reaction is one of skepticism and puzzlement. The textbook version of the 
Schwarzschild metr ic has been proved to be the unique spherically symmetr ic 
vacuum solution of Einstein's equations. I t is not possible to have several 
contenders. Any metr ics which purport to be spher ically symmetr ic vacuum 
solutions must therefore either be equivalent to the textbook Schwarzschild solution 
and derivable from it by a simple coordinate transformation, or they are not 
solutions at all . 

Recall Schwarzschild’s actual solution: 

(1)                       ds2 = (1 - α/R)dt2 - (1 - α/R)-1dt2 – R2(dθ2 + sin2θ dφ2), 

α = 2m,         R = (r3 + α3)1/3,      0 < r < ∞. 

The textbook version is incorrect – that is my point. Obviously there cannot be more than 
one contender. All solutions must indeed be able to be obtained from Schwarzschild’s 
solution by a transformation of coordinates. Hilbert’s solution cannot be so obtained from 
(1). The Droste/Weyl solution can be so obtained.  Satisfying the field equations and far-
field flatness are not suff icient for fixing a spacetime. A boundary condition at r = 0 must 
be applied to fix the value of the metrical coeff icient of the angular coordinates of the 
line-element and thereby, the spacetime. The value of this coeff icient selects a particular 
spacetime from an infinite family of one-parameter, inequivalent spacetimes. In the case 
of the mass-point this coeff icient reduces to α2 when r = 0. This value is a scalar 
invariant. Schwarzschild’s R2 reduces to α2.  Any such coeff icient function which does 
not reduce to α2 at r = 0 is cannot render a solution to the mass-point problem. This 
condition is not known to the conventional analysis. Hilbert’s solution violates this 
invariant condition. One cannot arbitrarily make this coeff icient zero when r = 0. 
Schwarzschild applied this boundary condition and so obtained the only valid solution. 
The interior of Hilbert’s metric is routinely described with non-static coordinates. This is 
a non-static solution to a static problem. Contra-hype. Birkhoff ’ s theorem actually says 
nothing about the range on the radial coordinate. (1) can be easily shown to satisfy that 
theorem. 

I t would be tedious for me to check whether your student's (1.1) is a bona fide 
vacuum solution, but a superficial argument suggests it is not. In the small r limit, 
the solution reads dŝ 2 = (r^3/3alpha^3)dt^2 - (3alpah^3/r3)dr^2 etc. This r^3 



behavior contrasts with the 1/r behaviour of the textbook Schwarzschild solution, 
and surely no coordinate transformation can conver t the one to the other . 

The coordinate radii are not important. What is important is that the proper distance from 
an event to the singularity goes to zero as the coordinate radius goes to the singularity. 
Coordinate radii are not well defined quantities. Droste's metric tensor is a transformation 
from Schwarzschild's, so of course their radial coordinates will behave differently.  

I show now that Schwarzschild’s solution satisfies the field equations. Take 
Schwarzschild’s metric as 

(2)                             ds2 = A(r)dt2 – B(r)dr2 – C(r)dθ2 – D(r,θ)dφ2,      

where  

A(r) =1 - α/R, B(r) = [A(r)]-1r4/(r3 + α3)4/3, C(r) = R2, D(r,θ) = R2sin2θ, 

R = (r3 + α3)1/3,  0 < r < ∞. 

The metric tensor so denoted must satisfy the vacuum field equations. Therefore, when 
substituted into the expressions for the stress-energy tensor the metric tensor of 
Schwarzschild must yield zeros. The expressions for the stress-energy tensor, as derived 
long ago by Herbert Dingle (I have attached them below as an appendix), for a very 
general li ne-element where the coeff icients are functions of ALL the coordinates, in the 
case of Schwarzschild’s metric (2) above, reduce to: 

 
-��7�11 = -1/C + C ' 2 /4BC2 + A'C'/2ABC, 

-��7�22 = C"/2BC + A"/2AB – C ' 2 /4BC2 - B'C'/4B2C - A ' 2/4A2B -  

-A'B'/4AB2 + A'C'/4ABC,               

T 33 = T 22. 

-��7�44 = C"/BC - 1/C - B'C'/2B2C – C ' 2 /4BC2, 

and T i
j = 0, i ��M��,I�\RX�PDNH�WKH�FDOFXODWLRns yourself (see appendix) you will verify the 

above expressions; or just trust my calculation of them. I have not made any errors. If you 
make the additional calculations using these expressions and Schwarzschild’s metric 
tensor from (2) you will verify that Schwarzschild’s solution is ‘a bona fide vacuum 
solution’ , as I have done myself.  

Here are some details (the prime indicates differentiation with respect to r): 

C’ = 2r2/(r3 + α3)1/3 A’ = αr2/(r3 + α3)4/3 



-8πT1
1 = -1/(r3 + α3)2/3 + [4r4/(r3 + α3)2/3]×[1 - α/(r3 + α3)1/3] ×(r3 + α3)4/3/[4r4(r3 + α3)4/3]  

+ αr2/( r3 + α3)4/3 × 2r2/(r3 + α3)1/3 × (r3 + α3)4/3/[2r4/(r3 + α3)2/3] 

              = -1/(r3 + α3)2/3 + 1/(r3 + α3)2/3 - α/(r3 + α3) + α/(r3 + α3)  

              = 0. 

In similar fashion it can be verified that all the stress-energy tensor expressions reduce to 
0. It is much easier to work with Bril louin’s form of Schwarzschild’s solution. In that 
case 

A(r) = r/(r + α),  B(r) = (r + α)/r,  C(r) = (r + α)2,  D(r,θ) = (r + α)2sin2θ. 

This form simpli fies the calculations. I used Schwarzschild’s solution in the calculation 
above to prove it directly. Using Bril louin’s form, 

A’ = α/(r + α)2,  A’’ = -2α/(r + α)3,  C’ = 2(r + α),       C’’ = 2,  B’ = -α/r, 

-8πT2
2 = 2r/[2(r + α)3] - 2αr(r + α)/[2r(r + α)4] – [4r(r + α)2]/[4(r + α)5] +  

+ (α/r2)[2r2(r + α)]/[4(r + α)4] – [α2r(r + α)]/[4r2(r + α)5] + α2r/[4r2(r + α)3] +  

+ [α/(r + α)2]{ 2(r + α)/[4(r + α)2]}  

=  r/(r + α)3 - α/(r + α)3 - r/(r + α)3 + α/[2(r + α)3] - α2/[4r(r + α)3] + α2/[4r(r + α)3] +  

+ α/(r + α)3 

       = 0. 

-8πT4
4 = 2r/(r + α)3 – 1/(r + α)2 + (α/r2)[2r2(r + α)]/[2(r + α)4] – 4r(r + α)2/[4(r + α)5] 

            = 2r/(r + α)3 - 1/(r + α)2 + α/(r + α)3 - r/(r + α)3 

 = (2r – r - α + α -r) /(r + α)3 

 = 0. 

Clearly, as I have said, satisfying the field equations is not suff icient to fix a valid 
solution. Consequently, additional conditions must be met for the fixing of a spacetime. 
Hilbert’s metric does not meet them all and is invalid. The conventional analysis is 
ignorant of all the necessary conditions. Schwarzschild’s solution meets them all and is 
therefore the only valid solution to the problem. Here is a metric that satisfies the field 
equations, has a Ricci curvature of 0, is far-field flat, and meets all the standard 
requirements for a solution: 



(3)                       ds2 = [1 - α/(r-α)]dt2 - [1 - α/(r-α)]-1dr2 – (r-α)2(dθ2 + sin2θ dφ2), 

0 < r < ∞. 

This metric is singular at r = α and at r = 2α, but nowhere else. Two horizons? Where is 
the source of the field? It can be obtained from Hilbert’s solution in the same way 
Hilbert’s can be obtained from Schwarzschild’s solution - by a simple but erroneous 
transformation.  

So I conclude that either (i) the student has misinterpreted Schwarzschild's paper 
or, (ii ) Schwarzschild made a mistake. I think (i) is more likely, particular ly as the 
student appears to have a hidden agenda, i.e. to prove that black holes do not exist. 
(And I am bound to ask, what additional " mistakes" invalidate the Reissner-
Nordstrom and Kerr solutions, and why can't one recover Schwarzschild as limits 
from these?) 

I have correctly interpreted Schwarzschild’s paper. Schwarzschild made no mistakes. His 
paper is a beautiful piece of mathematical physics.  The Reissner-Nordstrom and Kerr 
solutions reduce to Hilbert’s metric for certain values of their parameters. Since Hilbert’s 
metric is incorrect the Reissner-Nordstrom and Kerr metrics are also incorrect. I can 
provide a detailed demonstration if necessary. I have no hidden agenda. The science goes 
where it goes. One must draw consistent conclusions from the analysis. The analysis 
logically discredits the black hole.  

I shall now make very plain the error made by Hilbert. Consider again the general metric 
for the point-mass: 

 (a)                           ds2 = A(r)dt2 – B(r)dr2 – C(r)[dθ2 + sin2θ dφ2), 

A,B,C, > 0    for r > 0,            0 < r < ∞. 

A,B,C are all unknown functions, therefore their forms cannot be pre-empted arbitrarily. 
Also all one can say about at this stage is , 

(b)                    r → 0     ⇒     A(r) → A(0),      B(r) → B(0),       C(r) → C(0). 

These limits cannot be pre-empted either. Do now as Hilbert did, set  

 (c)                                                           r* = √C(r). 

Then by (b) it necessarily follows that the lower bound on r* is, 

(d)                                                           ro* = √C(0). 

One cannot know the value of √C(0) at this stage. One stil l doesn’ t know what C(r) is. It 
must be somehow determined. Hilbert unfortunately immediately dropped the * on r in 
(c) converting (a) into 



(e)                                 ds2 = M(r)dt2 – N(r)dr2 – r2(dθ2 + sin2θ dφ2), 

0 < r < ∞, 

from which he obtained his well -known solution. By dropping the * in (c) he effectively 
set C(r) = r2, which is arbitrary, and took 0 < r < ∞ directly from (a) into (e) and finally 
into his solution, in violation of (d). One can see from (c) that the r in (e) is not the same r 
in (a). Just keep the * on r through the transformation to make this even clearer. The rest 
of Hilbert is deduction with an incorrect transformation jammed up in the works, 
resulting in an incorrect metric. It really is that simple. The error is high school level, but 
it has been carried through since 1916, rather astonishingly. 

You should simply ask the student to calculate the curvature scalar R using (1.1) 
and prove it is zero. I bet it isn't. 

Lucky you did not put money on this one. The Ricci curvature is zero.  

To simpli fy the calculations I use Brill ouin’s form of Schwarzschild’s solution. The 
components of the metric tensor are 

g00 = r/(r+α),  g11 = -(r+α)/r,  g22 = -(r+α)2,   g33 = -(r+α)2sin2θ ,  

(a) 

and  

√|g| = (r+α)2sinθ. 

(b) 

The non-zero Christoffel symbols of the second kind are: 

Γ0
01 = α/[2r(r+α)]  Γ1

11 = -α/[2r(r+α)]   Γ2
21 = 1/(r+α) 

Γ3
31 = 1/(r+α)  Γ3

32 = cot θ  Γ1
00 = αr/[2(r+α)3] 

Γ1
22 = -r   Γ1

33 = -r sin2θ  Γ2
33 = -sinθ cos θ 

(c) 

The Ricci curvature is given by 

R = gµ ν{ ∂2/∂xµ ∂xν (ln√|g|) – [∂/∂xρ (√|g| Γ ρµ ν)]/√|g| + Γ ρµσ Γ σρν} . 

(d) 

Now if you put (a), (b) and (c) into (d) you get 



R = 0; 

as I have verified. The calculation is: 

R =  (r+α)/r { [-1/[(r+α)2sinθ] × ∂/∂r[(r+α)2sinθ Γ1
00] + 2Γ0

01 Γ1
00 } –  

- r/(r+α) { ∂2/∂r2 ln (r+α)2sinθ −1/[(r+α)2sinθ] × ∂/∂r[(r+α)2sinθ Γ1
11] + Γ 010 Γ 001  

                + Γ 111 Γ 111 + Γ 212 Γ 221 + Γ 313 Γ 331} -  

-1/(r+α)2 { ∂2/∂θ2 ln (r+α)2sinθ −1/[(r+α)2sinθ] × ∂/∂r[(r+α)2sinθ Γ1
22] + 2Γ 212 Γ 122 + Γ 323 Γ 332 }  

- 1/[(r+α)2sin2θ] { [-1/[(r+α)2sinθ] × (∂/∂r [(r+α)2sinθ Γ1
33] + ∂/∂θ [(r+α)2sinθ Γ2

33] )  

                  +  Γ1
33Γ3

13  + Γ2
33 Γ3

23  + Γ3
31 Γ1

33  + Γ3
32 Γ2

33 }  

= (r+α)/r { [-1/[(r+α)2sinθ] × [½αsinθ][α/(r+α)2] + 2α2r/[4r(r+α)4]} –  

- r/(r+α) { −2/(r+α)2 −1/[(r+α)2sinθ][-½α(r-r−α)sinθ /r2] + α2/[2r2 (r+α)2] + 2/(r+α)2} –  

- 1/(r+α)2 { –csc2θ  + sinθ/[(r+α)2sinθ ] [(r+α)2 + 2r(r+α)] – r/(r+α) - r/(r+α) + cot2θ} –  

- 1/[(r+α)2sin2θ] { sin2θ + 2r2sin2θ /(r+α)  + 2cos2θ - sin2θ  - 2rsin2θ /(r+α)  - 2cos2θ}  

= 0 + 0 + 0 + 0 = 0. 

If you want, you can verify the whole calculation; otherwise you can trust me - the result 
is correct. 

Remark 

I have now reworked my analysis in general terms, i.e. without reference to any 
coordinate system in particular.  I have obtained correct and complete solutions for the 
point-mass, the rotating point-mass, the point-charge and the rotating point-charge. The 
paper that was sent to you was preliminary, and rather vagarious. Not so with my latest 
writing. I would be happily disposed to discuss matters with you, if you are interested. It 
would be both interesting and rare. Most seem to want to keep their heads in the sand and 
tell me to go away, mostly in rather unflattering terms.  

Appendix I  

Dingle’s Equations 

Dingle’s generalized metric is 

ds2 = -A(dx1)2 – B(dx2)2 – C(dx3)2 + D(dx4)2, 



where A, B, C, and D are positive quantities to give a spacetime signature of –2, and can 
be functions of all the coordinates. The metric does not require spherical symmetry. The 
components of the generalized energy-momentum tensor are then given by: 

-��71
1 = ½[(∂2B/∂(x3)2 + ∂2C/∂(x2)2)/BC - (∂2B/∂(x4)2 -  

– ∂2D/∂(x2)2  )/BD - (∂2C/∂(x4)2  - ∂2D/∂(x3)2)/CD)] -  

- ¼{ [∂B/∂x3  ∂C/∂x3 + (∂C/∂x2)2]/BC2 + [∂C/∂x2 ∂B/∂x2 +  
 

+ (∂B/∂x3)2]/B2C - [∂B/∂x4 ∂D/∂x4 - (∂D/∂x2)2]/BD2 +  

+ [∂D/∂x2 ∂B/∂x2 - (∂B/∂x4)2]/B2D - [∂C/∂x4 ∂D/∂x4 –  

- (∂D/∂x3)2]/CD2 + [∂D/∂x3 ∂C/∂x3 - (∂C/∂x4)2]/DC2 -  

- [∂C/∂x2 ∂D/∂x2 + ∂B/∂x3 ∂D/∂x3 - ∂B/∂x4 ∂C/∂x4]/BCD -  

-(∂B/∂x1 ∂C/∂x1)/ABC - (∂B/∂x1 ∂D/∂x1)/ABD –  

- (∂C/∂x1 ∂D/∂x1)/ACD } + Λ 

 

-��72
2 = ½[(∂2A/∂(x3)2 + ∂2C/∂(x1)2)/AC - (∂2A/∂(x4)2 -  

– ∂2D/∂(x1)2  )/AD - (∂2C/∂(x4)2  - ∂2D/∂(x3)2)/CD)] -  

- ¼{ [∂A/∂x3  ∂C/∂x3 + (∂C/∂x1)2]/AC2 + [∂C/∂x1 ∂A/∂x1 +  
 

+ (∂A/∂x3)2]/A2C - [∂A/∂x4 ∂D/∂x4 - (∂D/∂x1)2]/AD2 +  

+ [∂D/∂x1 ∂A/∂x1 - (∂A/∂x4)2]/A2D - [∂C/∂x4 ∂D/∂x4 –  

- (∂D/∂x3)2]/CD2 + [∂D/∂x3 ∂C/∂x3 - (∂C/∂x4)2]/C2D-  

- [∂C/∂x1 ∂D/∂x1 + ∂A/∂x3 ∂D/∂x3 - ∂A/∂x4 ∂C/∂x4]/ACD -  

-(∂A/∂x2 ∂C/∂x2)/ABC - (∂A/∂x2 ∂D/∂x2)/ABD –  

- (∂C/∂x2 ∂D/∂x2)/BCD } + Λ 

 

-��73
3 = ½[(∂2A/∂(x2)2 + ∂2B/∂(x1)2)/AB - (∂2A/∂(x4)2 -  



– ∂2D/∂(x1)2)/AD - (∂2B/∂(x4)2  - ∂2D/∂(x2)2)/BD)] -  

- ¼{ [∂A/∂x2  ∂B/∂x2 + (∂B/∂x1)2]/AB2 + [∂B/∂x1 ∂A/∂x1 +  
 

+ (∂A/∂x2)2]/A2B - [∂A/∂x4 ∂D/∂x4 - (∂D/∂x1)2]/AD2 +  

+ [∂D/∂x1 ∂A/∂x1 - (∂A/∂x4)2]/A2D - [∂B/∂x4 ∂D/∂x4 –  

- (∂D/∂x2)2]/BD2 + [∂D/∂x2 ∂B/∂x2 - (∂B/∂x4)2]/B2D-  

- [∂B/∂x1 ∂D/∂x1 + ∂A/∂x2 ∂D/∂x2 - ∂A/∂x4 ∂B/∂x4]/ABD -  

-(∂A/∂x3 ∂B/∂x3)/ABC - (∂A/∂x3 ∂D/∂x3)/ACD –  

- (∂B/∂x3 ∂D/∂x3)/BCD } + Λ 

 

-��74
4 = ½[(∂2A/∂(x2)2 + ∂2B/∂(x1)2)/AB + (∂2A/∂(x3)2 +  

+ ∂2C/∂(x1)2)/AC + (∂2B/∂(x3)2  + ∂2C/∂(x2)2)/BC)] -  

-¼{ [∂A/∂x2  ∂B/∂x2 + (∂B/∂x1)2]/AB2 + [∂B/∂x1 ∂A/∂x1 +  
 

+ (∂A/∂x2)2]/A2B + [∂A/∂x3 ∂C/∂x3 + (∂C/∂x1)2]/AC2 +  

+ [∂C/∂x1 ∂A/∂x1 + (∂A/∂x3)2]/A2C + [∂B/∂x3 ∂C/∂x3 +  

+ (∂C/∂x2)2]/BC2 + [∂C/∂x2 ∂B/∂x2 + (∂B/∂x3)2]/B2C +  

+ [∂B/∂x1 ∂C/∂x1 + ∂A/∂x2 ∂C/∂x2 + ∂A/∂x3 ∂B/∂x3]/ABC +  

+ (∂A/∂x4 ∂B/∂x4)/ABD + (∂A/∂x4 ∂C/∂x4)/ACD +  

+ (∂B/∂x4 ∂C/∂x4)/BCD } + Λ 

 

-��$71
2 = -��%72

1 = - ½[(∂2C/∂x1∂x2)/C + (∂2D/∂x1∂x2)/D] +   

 + ¼[(∂C/∂x1 ∂C/∂x2)/C2 + (∂D/∂x1 ∂D/∂x2)/D2 +  

 + (∂A/∂x2 ∂C/∂x1)/AC + (∂A/∂x2 ∂D/∂x1)/AD +  

 + (∂B/∂x1 ∂C/∂x2)/BC + (∂B/∂x1 ∂D/∂x2)/BD] 



 

-��$71
3 = -��&73

1 = - ½[(∂2B/∂x1∂x3)/B + (∂2D/∂x1∂x3)/D] +   

 +¼[(∂B/∂x1 ∂B/∂x3)/B2 + (∂D/∂x1 ∂D/∂x3)/D2 +  

 + (∂A/∂x3 ∂B/∂x1)/AB + (∂A/∂x3 ∂D/∂x1)/AD +  

 + (∂C/∂x1 ∂B/∂x3)/BC + (∂C/∂x1 ∂D/∂x3)/CD] 

 

-��%72
3 = -��&73

2 = - ½[(∂2A/∂x2∂x3)/A + (∂2D/∂x2∂x3)/D] +   

 + ¼[(∂A/∂x2 ∂A/∂x3)/A2 + (∂D/∂x2 ∂D/∂x3)/D2 +  

 + (∂A/∂x2 ∂B/∂x3)/AB + (∂A/∂x3 ∂C/∂x2)/AC +  

 + (∂D/∂x2 ∂B/∂x3)/BD + (∂C/∂x2 ∂D/∂x3)/CD]  

-��$71
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1  = - ½[(∂2B/∂x1∂x4)/B + (∂2C/∂x1∂x4)/C] +   

 + ¼[(∂B/∂x1 ∂B/∂x4)/B2 + (∂C/∂x1 ∂C/∂x4)/C2 +  

 + (∂A/∂x4 ∂B/∂x1)/AB + (∂A/∂x4 ∂C/∂x1)/AC +  

 + (∂D/∂x1 ∂B/∂x4)/BD + (∂C/∂x4 ∂D/∂x1)/CD]  

 

-��%72
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2  = - ½[(∂2A/∂x2∂x4)/A + (∂2C/∂x2∂x4)/C] +   

 + ¼[(∂A/∂x2 ∂A/∂x4)/A2 + (∂C/∂x2 ∂C/∂x4)/C2 +  

 + (∂A/∂x2 ∂B/∂x4)/AB + (∂A/∂x4 ∂D/∂x2)/AD +  

  + (∂C/∂x2 ∂B/∂x4)/BC + (∂D/∂x2 ∂C/∂x4)/CD] 
 
 

-��&73
4� ���'74

3  = - ½[(∂2A/∂x3∂x4)/A + (∂2B/∂x3∂x4)/B] +   

 + ¼[(∂A/∂x3 ∂A/∂x4)/A2 + (∂B/∂x3 ∂B/∂x4)/B2 +  

 + (∂A/∂x3 ∂C/∂x4)/AC + (∂A/∂x4 ∂D/∂x3)/AD +  



  + (∂B/∂x3 ∂C/∂x4)/BC + (∂B/∂x4 ∂D/∂x3)/BD] 

 

 


